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a  b  s  t  r  a  c  t

Rubber  like  materials  parts  are  designed  using  finite  element  code  in  which  more  and  more  precise  and
robust constitutive  equations  are  implemented.  In general,  constitutive  equations  developed  in  literature
to represent  the  anisotropy  induced  by the  Mullins  effect  present  analytical  forms  that  are  not  adapted
to  finite  element  implementation.  The  present  paper  deals  with  the development  of  a constitutive  equa-
tion  that represents  the  anisotropy  of  the  Mullins  effect  using  only  strain  invariants.  The  efficiency  of
the  modeling  is  first  compared  to classical  homogeneous  experimental  tests  on  a filled  silicone  rubber.
Second,  the  model  is  tested  on  a complex  structure.  In this  aim,  a  silicone  holey  plate  is molded  and  tested
in tension,  its  local  strain  fields  are  evaluated  by means  of digital  image  correlation.  The  experimental
results  are  compared  to  the  simulations  from  the  constitutive  equation  implemented  in  a  finite  element
code.  Global  measurements  (i.e.  force  and displacement)  and  local  strain  fields  are  successfully  compared
to experimental  measurements  to validate  the  model.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Natural and synthetic elastomers are widely used in industrial
design and numerical simulations are often used to develop new
parts. These simulations are fundamental in the optimization pro-
cess of structure design. One of the main difficulties of the engineers
is the choice of an adapted constitutive equation able to represent
the behavior of the rubber like materials. The choice is often ori-
ented toward a hyperelastic constitutive equation. Finite element
codes present a large choice of strain energy densities, even if the
Mooney (1940) constitutive equation stays one of the most used.

However rubber like materials present a lot of other phenomena
than pure hyperelasticity to take into account, as for example: the
Mullins effect, the hysteresis and the time dependence. The Mullins
effect is very important as the mechanical behavior of the mate-
rial can totally change after a first loading as it depends both on
the maximal deformation and the loading direction. For instance,
for the study of cracks, the local deformation (i.e. near the tip)
are much superior to the global deformation initially inflected to
the structure, so a softer behavior is not adapted. Nevertheless the
Mullins effect could be ignored for particular studies, for instance
Lion (1997) analyzed the hysteresis of elastomers for second load-
ings. Thus for some rubber parts, it is very important to take into
account the Mullins effect, but very few constitutive equations
are implemented into industrial finite element codes. Eventhough,
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many researchers have developed isotropic constitutive equations
for the Mullins effect and proposed a finite element implementa-
tion (see for example Miehe, 1995; Miehe and Keck, 2000; Kaliske
et al., 2001; Chagnon et al., 2006; Guo et al., 2006; Cantournet et al.,
2009; Gracia et al., 2009).

Another important point is that, many new experimental data
are proposed in the literature to emphasize that the Mullins effect
is strongly anisotropic (Muhr et al., 1999; Park and Hamed, 2000;
Pawelski, 2001; Besdo and Ihlemann, 2003; Laraba-Abbes et al.,
2003; Diani et al., 2006a; Hanson et al., 2005; Itskov et al., 2006;
Machado et al., 2012b; Dorfmann and Pancheri, 2012). Differ-
ent constitutive equations have been proposed but they are not
adapted to finite element implementation. The only formulation
implemented in a finite element code was  proposed by Göktepe
and Miehe (2005) who used the approach of Miehe et al. (2004)
introducing a directional damage depending on the energy in the
considered direction. The use of the energy as a governing parame-
ter needs an optimization loop whereas a strain formulation avoids
this loop. In this way, the idea is here to propose a new formulation
that only depends on the strain state, avoiding the calculation of
energies which permits to have an explicit expression of the stress
in function of the strain. Some constitutive equations have been
developed for living tissues (Peña et al., 2009; Bose and Dorfmann,
2009; Kroon and Holzapfel, 2008) but they are limited to materi-
als presenting two reinforced directions. In this way, in this paper,
a new anisotropic model based on strain invariant formulation, is
proposed and implemented in a finite element code.

Recently, Machado et al. (2010, 2012b) developed a large
database for a filled silicone rubber including on one hand cyclic
classical experimental tests and on the other hand uniaxial tests
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realized after different uniaxial and biaxial tension tests. This
database is, here, used to build a new constitutive equation easily
implementable in finite element codes. In Section 2, the constitu-
tive equation is detailed and the ability of the model to describe
recent experimental data is discussed. In Section 3, the subject of
the numerical implementation of the model is treated. In Section 4,
the ability of the model to describe complex structures is tack-
led by means of a specific test on a rectangular plate containing
five holes. The global and local estimations of the model are com-
pared to experimental measures. Finally, Section 5 contains some
concluding remarks of the modeling.

2. Anisotropic modeling of the Mullins effect

2.1. General formulation in strain invariants

Different anisotropic approaches to model Mullins effect were
proposed in literature, but none of them was only expressed in
term of strain invariants. Shariff (2006) and Itskov et al. (2010)
took into account three principal damage directions to reproduce
a special behavior in the direction orthogonal to loading. In a more
general way, the spatial repartition of Bazant and Oh (1986) was
used by many authors to create an anisotropic model. Diani et al.
(2006b) and Dargazany and Itskov (2009) generalized the network
evolution proposed by Marckmann et al. (2002) to an anisotropic
approach by taking into account the maximum elongation in each
spatial direction. Later Merckel et al. (2011, 2012) introduced a new
framework and proposed a softening anisotropic criterion adapted
to complex loading states.

The stress softening phenomenon has often been associated to
the presence of fillers in the rubber, but Harwood et al. (1965)
showed that stress softening can also occur in unfilled rubbers,
even if it is reduced compared to filled rubbers. For silicone rub-
bers, Meunier et al. (2008) observed no Mullins effect for an unfilled
one, whereas Machado et al. (2010) observed stress softening for
a filled one. As a consequence, it can be considered that fillers in
silicone rubbers are mainly responsible of the Mullins effect. Thus,
as proposed by Govindjee and Simo (1992) the strain energy den-
sity W is additively decomposed into two parts: one that represents
the energy density of the chains linked to other chains Wcc and an
other part that represents the energy density of the chains linked
to filler Wcf . The total strain energy density is W = Wcc + Wcf . It is
considered that only Wcf can evolve with the Mullins effect as in
Göktepe and Miehe (2005).  As a consequence Wcc is represented by
a classical hyperelastic isotropic energy density and Wcf must be
represented by an anisotropic strain energy that can evolve with
the deformation history of the material. The ideal representation
would be to propose a full integration of all spatial directions as
proposed by Wu  and Giessen (1993) in hyperleasticity, but it is
not adapted to finite element implementation. A spatial discreti-
zation is needed. Forty-two initial spatial directions, noted A(i), are
introduced, these directions are those proposed by Bazant and Oh
(1986). Therefore, the strain energy density is written as:

W = Wcc(I1, I2) +
n∑

i=1

ω(i)F(i)W(i)
cf

(I(i)
4 ) (1)

where I1, I2 are the first and second strain invariants of the right
Cauchy–Green strain tensor C. The strain in each direction (i) is
defined by means of I(i)

4 = A(i).CA(i). ω(i) represents the weight of
each direction and F(i) is the Mullins effect evolution function. The
initial directions A(i) are transformed in a(i) by a(i) = FA(i), where F
is the deformation gradient.

Classically, in an isotropic approach, the evolution function F(i)

would be written through the strain energy density, but Chagnon

et al. (2004) showed that the first invariant can also be used. In an
anisotropic approach, the elongation in each direction is used Diani
et al. (2006b), knowing that the elongation is the square root of the
invariant I4. According to the conclusions of Machado et al. (2012b),
it is chosen to describe the stress-softening function according to I1
and I4(i). For each direction (i), an evolution function which depends
on three terms F1, F2, F3 is proposed:

F = 1 − F1(I1
max − I1)F2(I4

max(i) − I4
(i))F3

(
I4

max(i)

I4
max

)
(2)

where I1max and I4max(i) represent the maximum values taken
during the material history by I1 and I4(i) respectively. I4

max =
max

i
(I4

(i)) is the maximum dilatation in space and time. As proposed

by Zuñiga and Beatty (2002),  a function that is constant during first
loading and that evolves with the maximum and current deforma-
tions is imposed for the evolution function.

2.2. A particular form for evolution function

A Mooney (1940) constitutive equation is chosen for Wcc , and
a Kaliske (2000) quadratic equation K(I(i)

4 − 1)2 is chosen for W(i)
cf

,

where K(i) is a material parameter. A first particular form is
proposed for the stress-softening function, considering that a min-
imum of parameters should be introduced:

F(i) = 1 − �

√
I1max − I1
I1max − 3

(
I(i)
4 max − I(i)

4

I(i)
4  max − 1

) (
I(i)
4  max

I4 max

)4

(3)

In this way, the evolution function depends only on one parame-
ter: � which controls the stress softening for a given direction, this
parameter is without unity. The large experimental database pro-
posed by Machado et al. (2010, 2012b) on a filled silicone rubber is
used to fit the model. These experimental results are decomposed
into three parts: first the classical uniaxial tension, planar tension
and biaxial tests realized by means of a bulge test (Machado et al.,
2012a), second the complex tensile tests with change of directions
after the first loading; and third biaxial tensile tests followed by uni-
axial tensile tests. The three hyperelastic parameters C1, C2 and K(i)

are obtained by fitting the different first loading curves. All the K(i)

parameters are chosen equal as the material is initially isotropic.
The followings values are obtained: C1 = 0.05 MPa, C2 = 0.03 MPa
and ∀i K(i) = 0.10 MPa. The last parameter that characterizes the
stress softening is obtained by minimizing the errors on the second
loading curves for all the tests. The value � = 4 is obtained

The simulations of the cyclic uniaxial tensile, pure shear and
equibiaxial tensile tests are presented in Fig. 1. It appears that the
model describes well the stress softening for all these tests. The
model predicts well uniaxial and pure shear tests whereas equi-
biaxial first loading curve is underestimated. This phenomenon is
expected since first loading depends only on the hyperelastic equa-
tion. As explained by Marckmann and Verron (2006),  it is difficult
to fit all the different tests with the same energy density.

The proposed model is now compared with the experimental
data of the two complex pre-conditioning methods. First, Fig. 2,
presents the results for tensile tests with a change of loading direc-
tion between the first and second loadings. The results from the
model do not superimpose exactly experimental data, but all trends
are quite well described for the different directions. Second, the
model predictions are compared with biaxial pre-stretching tests
results. The biaxial loading is characterized by the biaxiality ratio
defined as � = ln(�min)/ln(�max) (where �min and �max are the min-
imum and maximum in-plane principal elongations). Tests with
different biaxiality ratios were used for the simulation. The com-
parison of the second loading curves is presented in Fig. 3. It appears
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