
 

 

 

Trans. Nonferrous Met. Soc. China 28(2018) 290−297 

 
Phase field method simulation of 

faceted dendrite growth with arbitrary symmetries 
 

Zhi CHEN1, Pei CHEN1, He-he GONG2, Pei-pei DUAN1, Li-mei HAO3, Ke-xin JIN1 
 

1. Department of Applied Physics, School of Science, Northwestern Polytechnical University, Xi’an 710129, China; 
2. School of Software and Microelectronics, Northwestern Polytechnical University, Xi’an 710129, China; 

3. Department of Applied Physics, School of Science, 
Xi’an University of Science and Technology, Xi’an 710054, China 

 
Received 30 November 2016; accepted 17 May 2017 

                                                                                                  
 

Abstract: A numerical simulation based on a regularized phase field model is developed to describe faceted dendrite growth 
morphology. The effects of mesh grid, anisotropy, supersaturation and fold symmetry on dendrite growth morphology were 
investigated, respectively. These results indicate that the nucleus grows into a hexagonal symmetry faceted dendrite. When the mesh 
grid is above 640×640, the size has no much effect on the shape. With the increase in the anisotropy value, the tip velocities of 
faceted dendrite increase and reach a balance value, and then decrease gradually. With the increase in the supersaturation value, 
crystal evolves from circle to the developed faceted dendrite morphology. Based on the Wulff theory and faceted symmetry 
morphology diagram, the proposed model was proved to be effective, and it can be generalized to arbitrary crystal symmetries. 
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1 Introduction 
 

Interfacial energy anisotropy and mobility reflect 
the crystal structure of interfaces in materials. The 
crystallographic anisotropy has an important effect on 
the evolution dynamics and the final morphology 
structures in materials processing [1,2]. In particular, the 
anisotropy allows for the simulation of dendrite growth 
branches in solidification problems [3,4]. When 
anisotropy is weak for solid/liquid interfaces in most 
metallic materials, strong anisotropy often leads to facet 
interface structures such as in silicon, snowflakes or 
smooth surfaces. Faceted patterns appear in advanced 
and technological materials [5]. Faceted dendrites have 
attracted much attention due to their unique crystal 
structures particularly [6−9]. For example, on account of 
their aesthetics, snowflakes have attracted considerable 
interest for decades [10]. While robust theoretical 
interpretations of facet equilibrium shapes exist, the 
dynamical aspects of faceted pattern formation are still 

less understood. Thus, it is important to understand and 
investigate the mechanism by numerical simulation. 

The most significant computational advantages of 
phase field method are that the explicit tracking of the 
interface is unnecessary, the interface curvature, 
anisotropy and kinetics parameters are implicitly 
incorporated in the phase field equation, and the phase 
field method has been proved to be a powerful tool for 
microstructure evolution simulation [11−16]. The 
method was developed by KARMA and RAPPEL [17] in 
1996 for solidification of pure substances and later 
generalized by KARMA [18] for alloy solidification. 
However, in the early time, phase field method was 
mainly used to study the dendrite growth with weak 
anisotropy value [4,18]. When the anisotropy is so 
sufficiently strong missing orientations occur and sharp 
corners form in the Wulff shape [19−21]. This becomes 
ill-posed and reduces to un-regularized phase field 
equations. In order to recover accurately equilibrium 
shapes with corners due to missing orientations, in 2001, 
EGGLESTON et al [22] dealt with the ill-posedness 
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through regularizing convexifying anisotropic surface 
energy, and simulated facet equilibrium shape with 
strong anisotropic interfacial energy. In an alternative 
phase-field approach, SUZUKI et al [23] simulated 
faceted crystal growth of silicon from the undercooled 
melt of silicon–nickel alloys. Recently, there also have 
been a number of attempts to regularize the phase-field 
equation [24−28]. For example, LIN et al [27] proposed 
a simplified anisotropic function, and then extended it to 
a 3D model. 

In this work, based on Eggleston model [22], an 
effective regularized phase field model was presented to 
model faceted structure with six-fold symmetry, and the 
effects of mesh grid, anisotropy parameters, and 
supersaturation on faceted dendrite growth morphology 
were examined in detail. Furthermore, the fundamental 
idea of regularizing phase field model can be extended to 
generalize faceted dendrite morphology with arbitrary 
symmetries. 
 
2 Phase field model 
 

The equilibrium condition at solid/liquid interface is 
obtained by the Gibbs−Thomson equation [22]: 
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where R(θ) is the curvature radius of the solid/liquid 
interface, W(θ)(=W0a(θ)) is the interface thickness to be 
anisotropic, a(θ)(=1+γcos(6θ)) is an anisotropic interface 
energy function, γ is the dimensionless anisotropy 
parameter, 6 is the folds of symmetry, f L and f S are the 
free energy densities of liquid and solid phases, 
respectively. When γ≤1/35, two sides of Eq. (1) are 
positive, and crystal morphology is smooth and 
continuity. When γ>1/35, the left side of Eq. (1) is 
negative as a result of the missing orientations, and 
discontinuous interface, which occurs concave similar to 
“ears”. Besides, Eq. (1) can calculate the equilibrium 
shape [2,3] for two dimensions in parametric form as 
 
x=W(θ)cos θ−W′(θ)sin θ                        (2) 
 
y=W(θ)sin θ−W′(θ)cos θ                        (3) 
 

Figure 1 shows the parametric plots for Wulff shape 
under different conditions. The unregularized Wulff 
shape is presented in dash red in Fig. 1(a). As shown for 
one typical strong anisotropy value, the equilibrium 
shape develops into sharp corners, and the high energy 
orientation for “ears” parts is missing. In order to 
simulate dendrite growth with strong anisotropy value, 
these “ears” must be removed, and the equation needs to 
be regularized. As seen in Fig. 1(b), missing orientations 

 

 

Fig. 1 Parametric plots: (a) Equilibrium shape of Wulff with 

“ears”(dash red line), equilibrium shape of regularized Wulff 

without “ears”(solid black line), plot of interface energy 

function W(θ) (solid blue line), plot of regularized interface 

energy function Ŵ(θ) (solid green line); (b) Illustrating 

regularization method, inverse interface energy function 

(1/W(θ)) and inverse regularization function 1/Ŵ(θ) 

 
in the equilibrium shape occur when the reciprocal W(θ) 
plot becomes concave. Therefore, in order to regularize 
the phase field equations, the interface energy within 
these missing orientations were regularized referring to 
method of EGGLESTON et al [22], as follows: 
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          (4) 
As illustrated in Ref. [2], it replaces the anisotropy 

function in these regimes by choosing appropriately 
circular sections, which is shown in Fig. 1(b) for the case 
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