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to play a dominant role).

The present paper is devoted to a micromechanical model of porous rocks and its application to a sand-
stone. This original model takes advantage of a recent homogenization-based macroscopic yield function
which couples Drucker-Prager type plasticity of the solid matrix and evolving porosity. Its formulation
and implementation are described. Application to a Vosges sandstone shows that, except for very low
confining pressures for which the mechanical behavior is quasi-brittle, the model predicts well the duc-
tile behavior at moderate or high confining pressures (for which the pore collapse mechanism is expected

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It is commonly recognized that evolving porosity strongly
affects the macroscopic mechanical behavior of cohesive geoma-
terials undergoing plastic deformation (Li et al., 2009; Menéndez
et al., 1996; Zimmermann, 1991). Since the pioneering work of
Gurson (1977), a relevant way to incorporate the effects of voids
in ductile materials behavior consists in deriving the macroscopic
yield function from a limit analysis approach. The Gurson yield
function predicts the effects of spherical voids on plastic behav-
ior of metallic porous materials whose matrix obeys to a von Mises
criterion. It has been widely used to formulate macroscopic consti-
tutive models allowing to investigate appropriately voids growth
process (Tvergaard and Needleman, 1984; Besson, 2001). Despite
the interest of these studies, the Gurson model fails to be appli-
cable to non metallic materials such as polymers or geomaterials
for which the solid matrix generally exhibits a pressure-sensitivity.
For this class of materials, Jeong (2002), and more recently Guo
et al. (2008) extend the Gurson limit analysis-based criterion by
considering ductile porous media having a Drucker-Prager type
matrix.

The main objectives of the present study are: (i) to for-
mulate a micromechanical constitutive model of ductile porous
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materials having a Drucker-Prager (pressure-sensitive) matrix; (ii)
to implement this model and assess its capabilities by comparing
the predictions to experimental data on a porous sandstone.

2. Macroscopic criterion of porous media with plastically
compressible matrix

In order to describe the mechanical behavior of geomaterials, it
is desirable to develop a constitutive model of ductile porous mate-
rial taking into account the plastic compressibility of the matrix.
This section is devoted to the presentation of a new Gurson-type
model based on a recent macroscopic criterion, derived by Guo et al.
(2008) from the limit analysis of a hollow sphere whose solid matrix
obeys to a Drucker-Prager criterion.

2.1. Methodology of derivation of Gurson-type model

Let us consider a representative elementary volume (r.e.v.) §2 of
a porous material with porosity f. The derivation of the Gurson-type
model presented below is based on the rigorous framework of Limit
Analysis which can be found in de Buhan (1986) and Suquet (1985).
The textbooks Leblond (2003) and Dormieux et al. (2006) also intro-
duced the main concepts of this theory for the derivation of the
macroscopic strength of ductile porous media (see also Dormieux
and Kondo, 2010). Let ¥ and D, respectively, denote the macro-
scopic stress and strain rate tensors. V(D) is the set of microscopic
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velocity fields, ¥(z), kinematically admissible with D. These velocity
fields comply with uniform strain rate boundary conditions:

VD) ={v, uz)=D-z (Vze 082) (1)

Let us consider a microscopic stress field o(z) in equilibrium and
related to the macroscopic stress tensor X, in the sense of the aver-
agerule X =1/|£2| f o0 dV. Hill's lemma states that:

1
D=— o:.ddv 2
|9|/Q @)

with d = (1/2)(grad v+!grad v), the microscopic strain rate tensor.
The strength of the solid phase is characterized by the convex set
G* of admissible stress states, which in turn is defined by a convex
strength criterion ¢5(o):

G = {0, ¢ (a) <0} (3)

The dual definition of the strength criterion consists in introducing
the support function 75(d) of G5, which is defined on the set of
symmetric second order tensors d and is convex with regard tod :

75(d) = sup(o : d, o € G°) (4)

75(d) represents the microscopic maximum “plastic” dissipation.
Its macroscopic counterpart is defined as:

hom _ _ : 1 s
mmon(p) - (1 f)vé%)Lm /an(d)dv} 5)

Using Eq. (2) together with (5), it can be shown that I7"°™ is the
support function of the domain G'"™ of macroscopic admissible
stresses:

IT""(D) = sup(X : D, X e Ghom) (6)

The limit stress states at the macroscopic scale are shown to be of
the form:

a Hhom

z oD

(7)
The above approach has been implemented by Gurson (1977),
assuming a Von Mises criterion for the solid matrix and considering
the following simplifications.

e The first simplification consists in representing the morphology
of the porous material by a hollow sphere instead of the r.e.v. Let
Re (resp. R;) denote the external (resp. cavity) radius. The vol-
ume fraction of the cavity in the sphere is equal to the porosity
f=(Ri[Re)>.

e Instead of seeking the infimum in Eq. (5), I7T"™(D) is estimated
by considering a particular microscopic velocity field y(z) com-
posed of an homogeneous part and a radial heterogeneous one
(corresponding to the solution of the hollow sphere obeying to
a Von Mises criterion and subjected to an external hydrostatic
pressure).
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Fig. 1. A sketch of the Drucker-Prager criterion and the von Mises criterion.

2.2. A brief summary of the criterion of Guo et al. (2008) in the
case of a Drucker-Prager matrix

The aim of this subsection is to briefly summarize the method-
ology leading to the macroscopic yield function (of the porous
medium) established by Guo et al. (2008) who follow the Gurson
approach, applying it to the case where the solid phase is plastically
compressible and obeys to a Drucker-Prager criterion. The later is
defined as:

¢° () = Oeq + 30tom — 09 (8)

where o, is the hydrostatic part of the local stress tensor o,
Oeq = 1/(3/2)0” : ¢’ (with ¢’ the deviatoric part of &) is the local
von Mises equivalent stress. o is linked to the yield stress of the
matrix under pure shear (o, =0). « is related to the friction angle
of the matrix ¥, by tan /4 =3c.. Note that the Von Mises criterion
corresponds to the particular case of a=0. As shown in Fig. 1, ¥,
represents the slope of the criterion in oeq — o, Stress space.

The corresponding support function 7r5(d) (local plastic dissipa-
tion) then reads:

7°(d) = 0pdeq (9)

in which, due to the plastic compressibility of the solid matrix, deq
is related to the volumetric strain trd by:

trd = 3adeqg  Withdeg = 4/ %d/ :d (10)

where d’' represents the deviatoric part of d. For the determination
of the macroscopic yield function, Guo et al. (2008) considered a
velocity field consisting, as in the Gurson work, in a radial hetero-
geneous part (associated here to a Drucker-Prager matrix) and an
homogeneous one. In the cylindrical frame (coordinates r, 6, z), this
field reads:

b 3/3
y(z)=Co<;) (pe, +ze,) + Cipe, + Coze, (11)

where Cy, C; and C; are three constants to be determined, s=1 42«
when Cp = 0and pissuchthatr = y/p? + z2.1t has been shown that
IT"°™(D) (Eq. (5)), computed with (9) in which deq is obtained by
considering the velocity field (11), reads (Guo et al., 2008):

1 T
hom(p) = 'CB;CZ'/ / \/[1 +%(3c0529—1) ;} (1 + w2x-2/5)sin 6 d0 dx (12)
r Jo

where

20x=1/s 3G
=———sign(C1 —C;) and w=——.
1+ w?x—2/s en(G - G) sIG = Gyl
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