Accepted Manuscript

Formamidinium lead iodide perovskite: Structure, shape and optical tuning via hydrothermal method

Govindhasamy Murugadoss, Rangasamy Thangamuthu, Manavalan Rajesh Kumar

PII: S0167-577X(18)31194-7

DOI: https://doi.org/10.1016/j.matlet.2018.08.003

Reference: MLBLUE 24714

To appear in: Materials Letters

Received Date: 29 June 2018 Revised Date: 28 July 2018 Accepted Date: 2 August 2018

Please cite this article as: G. Murugadoss, R. Thangamuthu, M. Rajesh Kumar, Formamidinium lead iodide perovskite: Structure, shape and optical tuning via hydrothermal method, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.08.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Formamidinium lead iodide perovskite: Structure, shape and optical tuning via hydrothermal method

Govindhasamy Murugadoss a,*, Rangasamy Thangamuthua, Manavalan Rajesh Kumar

^aMaterials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630 003,

Tamilnadu, India

^bInstitute of Natural Science and Mathematics, Ural Federal University, 620002 Yekaterinburg, Russia

Abstract

In this letter, we introduced a novel method for the preparation of room temperature stable α-FAPbI₃

perovskite without using organic ligands and mixed cations by hydrothermal method. Structural, optical and

morphology of the product were changed with respect to the temperature. Equal volume of the chlorobenzene

anti-solvent was used together with perovskite solution to saturate and simply growing the perovskite crystals

under hydrothermal method. Optimum temperature (140 °C) was determined from XRD and UV-vis absorption

result achieving stable α-FAPbI₃ perovskite. This work favours the understanding of the large scale with stable

 α -FAPbI₃ perovskite with interesting morphology, and paves the way for potential applications in diverse field.

Keywords: Perovskite; Solar energy materials, stability; structure; large scale.

*Corresponding author Email: murugadoss_g@yahoo.com

1. Introduction

Organic-inorganic hybrid lead halide perovskites have become one of the most intensively investigated

compounds owing to their advantageous physical and chemical properties for photovoltaic application [1-4].

Even though room temperature stable methylammonium lead triiodide (CH₃NH₃PbI₃) or MAPbI₃) has been the

most widely studied, formamidinium lead triiodide (HC(NH₂)₂PbI₃ or FAPbI₃) perovskite is gaining increasing

interest for its narrow band gap [5-7]. The FAPbI₃ possesses a band gap of 1.43 eV and the corresponding

absorption edge reaches 870 nm, which is superior to MAPbI₃ (820 nm) to serve as an efficient light harvester

[8]. It was found that two polymorphs existing in FAPbI₃: (i) photoactive black trigonal perovskite (α-phase)

above 160 °C and (ii) yellow hexagonal non-perovskite (δ-phase) at room temperature. The carrier diffusion

lengths of α-FAPbI₃ were previously estimated to about 177 nm and 813 nm for electrons and holes,

respectively [9]. Perovskite solar cells incorporating FAPbI₃ in absorber layer have achieved record certified

power conversion efficiency of 22% [10]. Despite many studies on FA-based perovskite structures in thin film

solar cells, the studies on intrinsic electrical, optical, and structural properties of FAPbI₃ still require for future

applications. To date, most work on FA-based perovskites focuses on the stabilization of α-FAPbI₃ at relatively

low temperature. Moreover, all the hybrid organic-inorganic perovskite crystals prepared by chemical method

1

Download English Version:

https://daneshyari.com/en/article/8012291

Download Persian Version:

https://daneshyari.com/article/8012291

<u>Daneshyari.com</u>