Accepted Manuscript

Microstructure and mechanical properties of magnesium silicide prepared via spark plasma assisted combustion synthesis

P. Vivekanandhan, R Murugasami, S. Kumaran

PII:	S0167-577X(18)31207-2
DOI:	https://doi.org/10.1016/j.matlet.2018.08.017
Reference:	MLBLUE 24728
To appear in:	Materials Letters
Received Date:	20 June 2018
Revised Date:	30 July 2018
Accepted Date:	5 August 2018

Please cite this article as: P. Vivekanandhan, R. Murugasami, S. Kumaran, Microstructure and mechanical properties of magnesium silicide prepared via spark plasma assisted combustion synthesis, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.08.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Microstructure and mechanical properties of magnesium silicide prepared via spark plasma assisted combustion synthesis

Vivekanandhan.P, Murugasami.R, Kumaran.S^{*}, Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli – 620015, Tamil Nadu, India. *Corresponding author E-Mail: kumara@nitt.edu Mobile: +91-9944434705, Tel: +91-431-2503482, Fax: +91-4312500133

Abstract

The current study reports the swift synthesis of high strength nanocrystalline magnesium silicide (Mg₂Si) doped with bismuth (Bi) of 0-0.025 at.% via spark plasma assisted combustion synthesis. The proposed synthesis approach is rapid (54 min) against the conventional liquid and solid state synthesis routes which warrants prolong duration. XRD and TEM studies reveal the *in-situ* evolution of Mg₂Si phase and substantial doping of Bi. The synthesized Mg₂Si compound exhibits higher density (>95). Mg₂Si_{0.975}-B_{0.025} demonstrates the benchmarked Vickers hardness of 484.2±15.44 Hv₁ and un-doped Mg₂Si shows the excellent fracture toughness of 2.09±0.03 MPa \sqrt{m} .

Keywords: Magnesium silicide; combustion synthesis; Electron microscopy; X-ray techniques; Spark plasma sintering; Mechanical properties.

1. Introduction

Thermoelectric (TE) technology is being received the tremendous attention in the field of energy conversion and cooling applications due to its unique traits such as functional simplicity, noiseless, cost-effective, zero maintenance, eco-friendly etc.,[1]. Among various TE materials, the greater interest is being focused on magnesium silicide (Mg₂Si) for their proven potential towards the development of new class of environmentally conscious and scalable thermoelectric Download English Version:

https://daneshyari.com/en/article/8012315

Download Persian Version:

https://daneshyari.com/article/8012315

Daneshyari.com