Accepted Manuscript

One-step combustion method for pomegranate Si/Ni compostie anode

Chaoqun Liu, Zhixin Zhang, Xiuwan Li, Li Qiao, Yujun Fu

PII: S0167-577X(18)31227-8

DOI: https://doi.org/10.1016/j.matlet.2018.08.035

Reference: MLBLUE 24746

To appear in: Materials Letters

Received Date: 25 June 2018
Revised Date: 22 July 2018
Accepted Date: 7 August 2018

Please cite this article as: C. Liu, Z. Zhang, X. Li, L. Qiao, Y. Fu, One-step combustion method for pomegranate Si/Ni compostie anode, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.08.035

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

One-step combustion method for pomegranate Si/Ni compostie anode

Chaoqun Liu^a, Zhixin Zhang^a, Xiuwan Li^a*, Li Qiao^b, Yujun Fu^c

^aFujian Provincial Key Laboratory of Light Propagation and Transformation, College of

Information Science and Engineering, Huaqiao University, Xiamen 361000, China

^bDepartment of Basic Research, Qinghai University, Xining 810016, China

^cSchool of Physical Science and Technology, and Key Laboratory for Magnetism and Magnetic

Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China

Abstract

Silicon is considered as a promising candidate for next-generation lithium-ion battery anodes due to its high theoretical capacity and low charge potential. However, large volume change during Li-ion insertion and extraction hinders its practical application. In this work, we develop a facile approach to fabricate pomegranate Si/Ni composite to solve the aforementioned problem. The pomegranate composites are linked together by Ni nanofoams, which can be directly converted into electrode by simple mechanical compression without the use of current collector, conductive agent, and binder. The pomegranate Si/Ni composite exhibits good cycling stability after 1000 cycles and a high reversible capacity of 0.84 mAh. This combustion method is a facile and economical approach, which provides a new idea for the commercial application of Si anode materials.

Keywords: Silicon, Porous materials, Nanocomposites, Combustion method, Lithium ion battery

* Corresponding author: E-mail: lixiuwan@hqu.edu.cn

1.Introduction

During the past decade, Silicon is an attractive anode material for next-generation lithium-ion

Download English Version:

https://daneshyari.com/en/article/8012318

Download Persian Version:

https://daneshyari.com/article/8012318

<u>Daneshyari.com</u>