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a b s t r a c t

The stability of elastic columns with variable cross-section under self-weight and concentrated end load
is considered. A simple and easy-to-implement approach is suggested. Different end conditions are dealt
with. The governing equation subject to associated boundary conditions for Euler–Bernoulli columns
is transformed into an integral equation, and critical buckling load is then evaluated by seeking the
lowest eigenvalue of the resulting integral equation. Numerical examples of the critical buckling load for
prismatic and non-prismatic columns under self-weight and end force are given, and the effectiveness
of this method for buckling analysis of tapered columns is validated. For several frequently encountered
end supports, the influence of the taper ratio on the critical buckling load is discussed.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Elastic columns are a class of important structural elements,
which have been widely used in civil, mechanical, and aerospace
engineering. The determination of critical load for buckling of
elastic columns is a key problem in engineering design. The first
researcher in this field can be traced back to Euler, who pioneered
the study of buckling of a prismatic column subjected to a com-
pressive force or under its own weight. Since then, great progress
in this field has been made. For example, Gere and Carter (1962)
derived exact buckling solutions for several special types of tapered
columns with simple boundary conditions in terms of Bessel func-
tions. Siginer (1992) also used the Bessel functions to deal with the
buckling of columns with linearly varying inverse of the bending
stiffness. For parabolically varying bending stiffness, Ermopoulos
(1986) studied the buckling of tapered columns subjected to axi-
ally concentrated loads at any position along the length direction.
Williams and Aston (1989) further analyzed bounds of the buck-
ling load of tapered columns with certain special second moment
of area. With the aid of the Bessel functions, Li (2001) gave a variety
of exact solutions for buckling of non-uniform columns under axial
concentrated and distributed loading. Using the inverse method,
Elishakoff (1999, 2000, 2001) obtained several closed-form solu-
tions for the buckling of inhomogeneous columns with special
variable bending stiffness. Furthermore, Li (2009) employed the
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inverse method and gave exact solutions for the generalized Euler’s
problem. For a prismatic column under self-weight and tip force,
Duan and Wang (2008) exactly determined the buckling load in
terms of generalized hypergeometric functions. Recently, Darbandi
et al. (2010) put forward to the perturbation method to determine
the buckling load of columns with variable cross-section under
axial loading. Wang (2010) investigated the stability of a braced
standing heavy column and obtained an optimum location of the
support for maximum load-carrying capacity. Huang and Li (in
press) dealt with buckling of axially graded columns with any axial
nonhomogeneity and further gave a suboptimal design of the shape
profile of a homogeneous column with constant weight constraint.

Although many methods have been presented to solve the
stability of elastic columns with variable cross-section under dif-
ferent boundary conditions, most of them have strict limitation. For
instance, application of the special function method such as using
Bessel functions strongly depends on the form of an ordinary dif-
ferential equation with variable coefficients. This paper presents
a procedure for determining the buckling load of prismatic and
non-prismatic columns under self-weight and tip force.

2. Basic equation

Consider the buckling of a non-prismatic elastic column of
length L subjected to an axial compressive force P at its upper tip.
When the effect of its own weight is taken into account, we denote
distributed axial load as Q(x) along its length direction to describe
this effect, where x stands for the axial coordinate measured from
the bottom end (Fig. 1). Under such a circumstance, the govern-
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Fig. 1. Schematic of non-prismatic columns under self-weight and tip force.

ing differential equation for elastic buckling of Euler–Bernoulli
columns is

d2

dx2

[
EI(x)

d2w

dx2

]
+ d

dx

[
P + Q (x)

dw

dx

]
= 0, 0 < x < L, (1)

where E is Young’s modulus, w is the deflection, and I(x) is the area
moment of inertia.

To simplify our analysis, in what follows we introduce the
following dimensionless variable: � = x/L, and consider a non-
prismatic column with rectangular cross-section of linearly varying
width and thickness, say. Then we have

EI(x) = EI0I(�), Q (x) = q0Lf (�) (2)

with

I(�) = (1 − ˛1�)(1 − ˛2�)3, f (�) =
∫ 1

�

(1 − ˛1�)(1 − ˛2�) d�,

(3)

where ˛1, ˛2 are two taper ratios with respect to the width and
thickness directions, respectively, and q0 denotes weight per unit
length. Moreover, 0 ≤ ˛j ≤ 1. In particular, when ˛j = 1, the rectan-
gular column tapers to a sharp tip. This case may make the critical
buckling load of elastic columns vanish (Timoshenko and Gere,
1961), and is nearly a theoretical limit because it can never be
reached in practice. Consequently, Eq. (1) can be transformed into
a normalized form
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d�2

[
I(�)

d2w

d�2

]
+ �p

d2w

d�2
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d

d�

[
f (�)

dw

d�

]
= 0, (4)

where

�p = PL2

EI0
, �q = q0L3

EI0
. (5)

Now we integrate both sides of Eq. (4) four times and then get

I(�)w(�) +
∫ �

0

K(�, s)w(s) ds = C1

6
�3 + C2

2
�2 + C3� + C4 (6)

where Cj (j = 1, 2, 3, 4) are unknown constants to be determined
through boundary conditions at both ends, and the kernel function
K(�, s) is

K(�, s) = −2I′(s) + (� − s)[I′′(s) + �p + �qf (s)] − �q

2
(� − s)2f ′(s). (7)

In the above, the prime represents differentiation with respect
to the argument.

3. Solution procedure

Here consider several typical heavy columns under an end force.
For clamped-free (C-F) columns with clamped end x = 0 and free end
x = L, the boundary conditions for this case can be written below

w(0) = 0, w′(0) = 0, (8)

d2w

d�2
= 0,

d

d�

[
I(�)

d2w

d�2

]
+ �p

dw

d�
= 0, � = 1. (9)

Using the above conditions, we easily find

C1 = 0, C2 = −2
2I(1) − �p

∫ 1

0

[�pK(1, s) + �qI(1)f ′(s)]w(s) ds

C3 = 0, C4 = 0

.

After substitution of the above results of Cj into Eq. (6), we get
an integral equation with respect to w as follows:

I(�)w(�) +
∫ �

0

K(�, s)w(s) ds +
∫ 1

0

H(�, s)w(s) ds = 0, (10)

where

H(�, s) = �2

2I(1) − �p
[�pK(1, s) + �qI(1)f ′(s)] = 0. (11)

Using the same procedure, for other elastic columns with the
following boundary conditions:

w = 0, w′ = 0 at � = 0, 1,

for clamped-clamped (C-C) columns;

w = 0, w′′ = 0 at � = 0, 1, for hinged-hinged (H-H) columns;

w(0) = w′(0) = 0, w(1) = w′′(1) = 0,

for clamped-hinged (C-H) columns;

we similarly obtain an integral equation for each case, which is still
expressed by (10), but with the following kernel

H(�, s) =

⎧⎪⎪⎪⎨
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−�3[K ′
�
(1, s) − 2K(1, s)]

−�2[3K(1, s) − K ′
�
(1, s)] for C-C columns,

1
6

�3�qf ′(s) − �[K(1, s) + �q

6
f ′(s)] for H-H columns,

�3 − �2

4
�qf ′(s) + �3 − 3�2

2
K(1, s) for C-H columns.

(12)

where K ′
�
(�, s) = ∂K(�, s)/∂�.

As a consequence, it suffices to determine the eigenvalues of the
resulting integral Eq. (10). The critical buckling load is in fact related
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