Accepted Manuscript

Interconnected quasi-nanospheres of SnO₂/TiO₂/C with gap spaces for improved lithium storage

Dongmei Bao, Qinghua Tian

PII: S0167-577X(18)30967-4

DOI: https://doi.org/10.1016/j.matlet.2018.06.062

Reference: MLBLUE 24502

To appear in: Materials Letters

Received Date: 8 January 2018 Revised Date: 4 April 2018 Accepted Date: 18 June 2018

Please cite this article as: D. Bao, Q. Tian, Interconnected quasi-nanospheres of SnO₂/TiO₂/C with gap spaces for improved lithium storage, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.06.062

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Interconnected quasi-nanospheres of SnO₂/TiO₂/C with gap spaces for improved lithium

storage

Dongmei Bao^a* and Qinghua Tian ^b*

^aSchool of Chemical Engineering (School of Chinese Pharmacy), Guizhou Minzu University

Guiyang 550025, P. R. China

^bSchool of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China

*Corresponding author e-mail address: dongtian1314521@163.com; 09tqinghua@163.com

Abstract: Herein, by combining the advantages of SnO₂, TiO₂ and carbon elaborately, we present a

stable nanostructure of SnO₂-based composite. As a promising anode for lithium-ion batteries (LIBs), it

delivers a high capacity of 642.5 mAh g⁻¹ after even 450 cycles, exhibiting outstanding lithium storage

performance. This work provides a facile and effective method for addressing the undesirable volume

variation issue of SnO₂ anodes.

Keywords: Crystal structure; Functional; Tin dioxide; Anode; Lithium-ion batteries

1. Introduction

Due to its high specific capacity and safe working potential, SnO2 anode currently gains extensive

attention. However, its practical application in lithium-ion batteries (LIBs) still suffers from a

tremendous challenge [1]. The large volume variation of SnO₂ happened during cycling can easily

cause the solid electrolyte interface (SEI) layer broken and expose the generated fresh surface of active

materials to electrolyte, resulting in continuous growth of the SEI layer. Moreover, Sn nanoparticles

derived from reduction of SnO2 are easily aggregated to larger particles, which causes electrode

fracture and loss of electrical contact during battery cycles [2, 3]. Taken together, severe capacity decay

is often observed in SnO2 electrodes [4]. Therefore, the fatal issues of large volume variation and

aggregation need to be well addressed.

1/10

Download English Version:

https://daneshyari.com/en/article/8012402

Download Persian Version:

https://daneshyari.com/article/8012402

Daneshyari.com