Accepted Manuscript

Microstructure and mechanical property of biodegradable Mg-1.5Zn-0.6Zr alloy with varying contents of scandium

Tao Li, Yong He, Jixue Zhou, Shouqiu Tang, Yuansheng Yang, Xitao Wang

PII: S0167-577X(18)31002-4

DOI: https://doi.org/10.1016/j.matlet.2018.06.097

Reference: MLBLUE 24537

To appear in: *Materials Letters*

Received Date: 14 May 2018 Revised Date: 11 June 2018 Accepted Date: 23 June 2018

Please cite this article as: T. Li, Y. He, J. Zhou, S. Tang, Y. Yang, X. Wang, Microstructure and mechanical property of biodegradable Mg–1.5Zn–0.6Zr alloy with varying contents of scandium, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.06.097

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Microstructure and mechanical property of biodegradable Mg-1.5Zn-0.6Zr alloy with varying contents of scandium

Tao Li a,b,c,*, Yong He c, Jixue Zhou a, Shouqiu Tang a, Yuansheng Yang a,b, Xitao Wang d,*

^a Qilu University of Technology (Shandong Academy of Sciences), Advanced Materials Institute, Shandong Provincial Key Laboratory for High Strength Lightweight Metallic Materials, Jinan 250014, China;

^b Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;

^c State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing,

Beijing 100083, China;

^d Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing,

Beijing 100083, China

*Corresponding authors: litao@sdas.org (T. Li), xtwang@ustb.edu.cn (X. Wang).

ABSTRACT

Heretofore, understandings about the effects of scandium on properties of magnesium alloys for biodegradable implant applications are extremely limited. In the present study, four Mg–1.5Zn–0.6Zr–xSc (ZK21–xSc, x=0, 0.2, 0.5, 1.0 wt.%) alloys were fabricated and investigated with respect to the microstructure and mechanical properties. Microstructure characterization indicated that grain sizes were refined and more precipitated particles were observed with increasing Sc addition. Mechanical testing revealed that improved yield strength and decreased elongation were obtained after Sc being added. Compared with other developed Mg alloys, the ZK21–0.2Sc alloy demonstrates balanced combination of strength and elongation, which shows great potential in biodegradable materials application.

Download English Version:

https://daneshyari.com/en/article/8012407

Download Persian Version:

https://daneshyari.com/article/8012407

<u>Daneshyari.com</u>