Accepted Manuscript

Characterization of the nano-cellulose aerogel from mixing CNF and CNC with different ratio

Tianmeng Zhang, Yang Zhang, Xiaoyu Wang, Shuang Liu, Yuan Yao

PII: S0167-577X(18)31007-3

DOI: https://doi.org/10.1016/j.matlet.2018.06.101

Reference: MLBLUE 24541

To appear in: Materials Letters

Received Date: 27 January 2018 Revised Date: 9 May 2018 Accepted Date: 23 June 2018

Please cite this article as: T. Zhang, Y. Zhang, X. Wang, S. Liu, Y. Yao, Characterization of the nano-cellulose aerogel from mixing CNF and CNC with different ratio, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.06.101

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Characterization of the nano-cellulose aerogel from mixing CNF and CNC with different ratio

Tianmeng Zhang, Yang Zhang *, Xiaoyu Wang, Shuang Liu, Yuan Yao

College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China

ABSTRACT: In this paper, cellulose nanocrystal (CNC) and cellulose nanofiber (CNF) were prepared by chemical and mechanical methods, and their aerogel were fabricated by freeze-drying technology in combination with solvent replacement. The mixed aerogel of CNC and CNF showed better performance than that from pure CNC or CNF. What's more, the mixture ratio of CNC and CNF has great influences on the properties of the prepared aerogel. When the mixture ratio of CNF and CNC was 3:1, the internal of aerogel presents a uniform three-dimensional network structure with abundant pores. It exhibited a higher specific surface area of up to 143 m²/g and the

Keywords: cellulose nanofiber; cellulose nanocrystal; mix; aerogel;

compressive strength was 0.202MPa under 80% strain.

1. Introduction

Aerogel, a highly porous nanostructured material, which was first proposed by Kistler [1] in 1931 and gradually attracted the attention of researchers. It has been widely used in a wide range of fields, e.g adsorption, heat insulation and dielectric[2, 3]. Cellulose aerogel, known as a new generation of aerogel material following inorganic aerogel and organic polymer aerogel. It not only shows the traditional features of aerogles (high specific surface area, high porosity, low dielectric constant, etc [4].), but has renewable, biocompatible and some other merits due to its raw material cellulose [5]. Nano-cellulose is attracting increasing interest due to unique properties, such as high mechanical strength, high purity, high degree of *Corresponding author.

E-mail address: yangzhang31@126.com (Y. Zhang)

Download English Version:

https://daneshyari.com/en/article/8012431

Download Persian Version:

https://daneshyari.com/article/8012431

<u>Daneshyari.com</u>