Accepted Manuscript

Controllable *in-situ* Growth of 3D Villose TiO₂ Architectures on Carbon Textiles as Flexible Anode for Advanced Lithium-Ion Batteries

Yu Xia, Wan-Sheng Xiong, Yun Jiang, Si-Yu Zhou, Cheng-Long Hu, Rong-Xiang He, Hong-Qian Sang, Bolei Chen, Yumin Liu, Xing-Zhong Zhao

PII: S0167-577X(18)30998-4

DOI: https://doi.org/10.1016/j.matlet.2018.06.093

Reference: MLBLUE 24533

To appear in: *Materials Letters*

Received Date: 2 March 2018 Revised Date: 14 June 2018 Accepted Date: 23 June 2018

Please cite this article as: Y. Xia, W-S. Xiong, Y. Jiang, S-Y. Zhou, C-L. Hu, R-X. He, H-Q. Sang, B. Chen, Y. Liu, X-Z. Zhao, Controllable *in-situ* Growth of 3D Villose TiO₂ Architectures on Carbon Textiles as Flexible Anode for Advanced Lithium-Ion Batteries, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.06.093

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Controllable *in-situ* Growth of 3D Villose TiO₂ Architectures on Carbon Textiles as Flexible Anode for Advanced Lithium-Ion Batteries

Yu Xia,[†] Wan-Sheng Xiong,[†] Yun Jiang,[†] Si-Yu Zhou, [†] Cheng-Long Hu, [†] Rong-Xiang He, [†] Hong-Qian Sang, [†] Bolei Chen, [†] Yumin Liu, **[†] and Xing-Zhong Zhao^{†,§}

[†] Institute for Interdisciplinary Research, Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China.

§ School of Physics and Technology, Key Laboratory of Artificial Micro/Nano Structures, Ministry of Education, Wuhan University, Wuhan 430072, China. E-mail: ymliu@jhun.edu.cn

ABSTRACT

Controllable three-dimensional villose titanium dioxide architectures grown on carbon textiles are fabricated by a facile one-step *in-situ* hydrothermal method at low temperatures. It has in fact been proven to be an effective method to reduce self-aggregation and promote lithium-ion intercalate/extract via building 3D architectures based on 2D conductive materials. More importantly, the freestanding electrodes without any addition of conductive agents and polymeric binders reveal significant improvement in high-rate capacity and cycling performance.

KEYWORDS: controllable TiO₂ architecture; carbon textile; *in-situ* growth; flexible anode; lithium-ion battery.

1. Introduction

High performance lithium-ion batteries (LIBs) with fast charge and discharge rate have attracted intensive research to power future advanced plug-in hybrid electric and electric vehicles [1,2]. Owing to the safety concerns of graphite, such as the formation of lithium dendrite and thermal instability of solid-electrolyte interphase (SEI) film, substantial efforts have been devoted to advanced anode materials over the past decades [3-7]. Titanium dioxide has been regarded as one of the most promising

Download English Version:

https://daneshyari.com/en/article/8012440

Download Persian Version:

https://daneshyari.com/article/8012440

<u>Daneshyari.com</u>