Materials Letters 227 (2018) 141-144

Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/mlblue

Tip radius variation with elastic indentation depth

ABSTRACT

Alan F. Jankowski^{a,*}, H.S. Tanvir Ahmed^b, Eric M. Brannigan^c

^a Sandia National Laboratory, P.O. Box 969 MS-9161, Livermore, CA 94551-0969, United States ^b Intel Corporation, 2501 NW Butler St., Portland, OR 97124, United States

^c Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, United States

ARTICLE INFO

Article history: Received 8 January 2018 Received in revised form 21 March 2018 Accepted 9 May 2018

Keywords: Nanoindentation Indenter tip radius Reduced modulus Tapping mode

1. Introduction

A series of known materials are analyzed in the tapping mode to relate the square of the change in resonant frequency Δf (Hz) of the indenter with displacement **x**. Once contact is made between the surface and indenter (as seen in Fig. 1), a nonlinear increase in $(\Delta f)^2$ is found with increasing displacement **x** until a range of linear elastic response is reached where the amplitude of the oscillation is reduced to just a few nanometers. The elastic range **z** (nm) within the displacement **x** is found [1-8] where the parameter α^2 represents the slope of the variation of $(\Delta f)^2$ with **z**, i.e. α equals $(\Delta f) \cdot \mathbf{z}^{-1/2}$. The parameter α (Hz · nm^{-0.5}) is a power-law function of the reduced elastic modulus **E**^{*} (GPa) for the material, i.e. α equals $c_{\alpha} \cdot (\mathbf{E}^*)^n$ where c_{α} is a constant.

The α -values measured for known materials are unique to each probe assembly, i.e. the indenter tip mounted to a rigid cantilever support. Calibration measurements of α -values with known modulus values of E_{ref}^* for reference materials enables the determination of unknown E^* for materials under study. Relationships are now developed to fit the value of the indenter tip radius **R** as a function of elastic deformation **z**, i.e. **R**(**z**). It's anticipated that more compliant materials have a greater range of elastic deformation, and that at these greater elastic depths of deformation the indenter tip radius will increase due to deformation of the tip and/or a change in the tip shape. It may not be possible to distinguish the

* Corresponding author. E-mail address: afjanko@sandia.gov (A.F. Jankowski). different causes for the radius increase, i.e. deformation-induced

2. Experimental method and results

or natural changes in tip shape.

The reduced elastic modulus of a material is measured with a nanoindenter probe that is operated in the

tapping mode. The resonant frequency of a freely oscillating cantilever is reduced when contact is made

between the indenter tip and surface under investigation. It's shown using elasticity theory that the elas-

tic deformation is a function of the indenter tip radius. A deeper penetration within the elastic range can change the tip radius, and introduce an error of 10% in calculating the reduced elastic modulus.

Elasticity theory is used in the development of the model [8,9] for the indenter tip radius **R** (nm) variation with measured values of Δ **f** and **z**. The derivation uses Hertz contact mechanics with formulations for the dynamic equivalent of the cantilever with a probe tip. A simplified expression is determined using the first two terms in a Taylor series expansion of the change of frequency Δ **f** for the state of natural oscillation to the contact state with the surface. The tip radius **R** is first approximated [8] as computed from the measured α -value and the known reduced modulus E^{*} for the material as

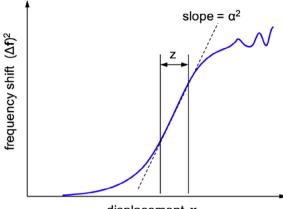
$$\boldsymbol{\alpha} = \left(\mathbf{f}_{o} \times \mathbf{R}_{o}^{1/2} \times \mathbf{k}_{c}^{-1} \right) \times \mathbf{E}^{*}$$
(1)

The cantilever spring constant k_c equals 22.229 kN·m⁻¹ and the resonant frequency constant f_o equals 14.000 kHz. The variation in the data for the measured elastic displacement z with tip radius R, as computed using Eq. (1), is fit in Fig. 2 with an exponential function as

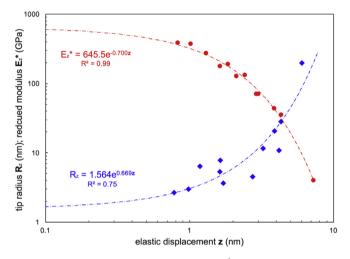
$$\mathbf{R}_{\mathbf{z}} = \mathbf{C}_{\mathrm{r}} \times \boldsymbol{e}^{(\mathbf{c}_{\mathrm{rz}} \times \mathbf{z})} \tag{2}$$

The curve fit using Eq. (2) now establishes the functional relationship for tip radius variation with elastic deformation.

For Eq. (2), it's found that c_r equals 1.564 nm and c_{rz} equals 0.669 nm⁻¹. The intercept value at zero elastic depth provides



Featured Letter


© 2018 Elsevier B.V. All rights reserved.

displacement x

Fig. 1. The resonant frequency shift Δf for a cantilever with a tip in contact with a surface is shown as a function of tip displacement **x**.

Fig. 2. The variation of the reduced elastic modulus \mathbf{E}_{z}^{*} (GPa) (circles) and indenter tip radius \mathbf{R}_{z} (nm) (diamonds) with the elastic displacement z (nm).

the undeformed condition for the tip radius as a value of 1.56 nm. A more exact analytic expression than represented in Eq. (1) is next developed [8] that accommodates the nonlinear relationship between α and E^{*}. An additional term is introduced from the Taylor's series expansion of the frequency shift $\Delta \mathbf{f}$. Since the α -values are experimentally determined for materials with known reduced-modulus value E^{*}, the elastic deformation \mathbf{z} can now be modeled using the more accurate expression

$\boldsymbol{E_{z}}^{*} = \left\{ 1 - \left[1 - \left(2\boldsymbol{a} \times \boldsymbol{z}^{1/2} \times \boldsymbol{f_{o}}^{-1} \right) \right]^{1/2} \right\} \times \left[\boldsymbol{k_{c}} \times \left(\boldsymbol{R_{z}} \times \boldsymbol{z} \right)^{-1/2} \right] \quad (3)$

The value for $\mathbf{R}_{\mathbf{z}}$ fitted from Eq. (2) is used as input into Eq. (3). This value for \mathbf{R} is determined by computing a value of \mathbf{z} using Eq. (3) to reproduce the known reduced modulus \mathbf{E}_{ref}^* of the indented material. The reference values determined for the elastic moduli [8–15] of each calibration material are listed in Table 1.

The results for the variation of reduced modulus with elastic depth that are plotted in Fig. 2 follow a negative exponential relationship of the form

$$\mathbf{E}_{\mathbf{z}}^* = \mathbf{C}_{\mathbf{e}} \times \mathbf{e}^{-(\mathbf{c}_{\mathbf{ez}} \times \mathbf{z})} \tag{4}$$

The curve fitting using Eq. (3) establishes the functional relationship for the reduced modulus variation with elastic deformation in Eq. (4) where c_e equals 645 GPa and c_{ez} equals 0.700 nm⁻¹. The E_o^* intercept value is the reduced modulus value at zero elastic depth. The c_e value is that which would be approximated for the E^* of the diamond indenter itself. A 645 GPa value for c_e is consistent with the reduced modulus E^* , i.e. $(1 - v^2)/E$ value of 0.00078 GPa⁻¹, as is typically reported [8,9] for diamond.

The fitted value for the elastic deformation z computed using Eq. (3) versus that value of z determined from experimental measurements are listed in Table 1, and plotted in Fig. 3 along with the **R**-values computed using Eqs. (1)-(2). The z- and **R**-values computed using these methods [8–16] are consistent in magnitude as seen in the linear curves of Fig. 3.

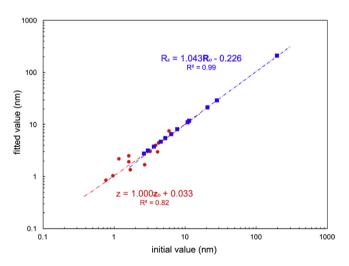


Fig. 3. The variation between experimental and fitted values of z (circles), and the values for tip radius R using the simplified and expanded Taylor's series formulations (squares).

Table 1

Values of α , elastic displacement z, Poisson's ration v, reduced elastic modulus E^{*} , and indenter tip radius R.

Sample	α _{meas} (Hz·nm ^{−0.5})	\mathbf{z}_{meas} (nm)	$\mathbf{z}_{eqn.(3)}(nm)$	R _o (nm)	$\mathbf{R}_{\mathbf{z}}(\mathbf{nm})$	\mathbf{E}_{ref}^{*} (GPa)	E z [*] (GPa)	v
sapphire poly	401 ± 26	0.98	1.02	3.01	3.09	367.3	367.4	0.27
sapphire (00.2)	392 ± 27	0.78	0.83	2.66	2.73	381.8	381.9	0.27
nickel (111)	325 ± 20	1.71	1.31	3.67	3.76	269.1	269.6	0.31
tantalum (110)	271 ± 23	1.62	1.86	5.29	5.43	186.9	187.1	0.34
silicon (111)	236 ± 23	2.74	1.63	4.55	4.65	175.9	175.9	0.27
vanadium (110)	228 ± 22	1.63	2.43	7.74	7.95	130.4	130.3	0.37
silicon (100)	202 ± 16	1.18	2.13	6.38	6.50	127.1	127.2	0.27
fused quartz	149 ± 13	3.25	3.01	11.49	11.71	70.0	70.0	0.17
fused silica	145 ± 14	4.17	2.92	10.88	11.03	70.0	70.1	0.17
neodymium poly	125 ± 11	3.9	3.88	20.61	20.96	43.6	43.6	0.28
bismuth poly	117 ± 9	4.3	4.35	28.29	28.69	35.0	35.0	0.33
polycarbonate	35.8 ± 1.4	6.08	7.30	198.0	206.4	4.0	4.0	0.37

Download English Version:

https://daneshyari.com/en/article/8012669

Download Persian Version:

https://daneshyari.com/article/8012669

Daneshyari.com