Accepted Manuscript

Synthesis of CeNb₃O₉ perovskite by Pechini method

Jussara V. Reis, Tayanna A.C. Passos, Thamara H.A. Teles, Alexandre Boscaro França, Jorge David Alguiar Bellido, Fabiano Luiz Naves, Eduardo P. Baston

PII: S0167-577X(18)30847-4

DOI: https://doi.org/10.1016/j.matlet.2018.05.093

Reference: MLBLUE 24393

To appear in: Materials Letters

Received Date: 29 March 2018 Revised Date: 18 May 2018 Accepted Date: 21 May 2018

Please cite this article as: J.V. Reis, T.A.C. Passos, T.H.A. Teles, A.B. França, J.D.A. Bellido, F.L. Naves, E.P. Baston, Synthesis of CeNb₃O₉ perovskite by Pechini method, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.05.093

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Synthesis of CeNb₃O₉ perovskite by Pechini method

Jussara V. Reis^a, Tayanna A.C. Passos^a, Thamara H.A. Teles^a, Alexandre Boscaro França^a, Jorge David

Alguiar Bellido^a, Fabiano Luiz Naves^a, Eduardo P. Baston^a

^aDepartment of Chemical Engineering, Federal University of São João Del Rei, 36420-000. PO Box 131.

Ouro Branco, MG, Brazil.

Abstract

Pechini method was applied for the first time to synthesize CeNb₃O₉ perovskite at different calcination

temperatures (600, 800 and 1000°C). A solution of water, citric acid, ethylene glycol, ammonium

niobium oxalate and cerium ions was polymerized and calcined at 300°C for 2 hours. The precursor gels

were submitted to a second calcination at 600, 800 and 1000°C to obtain perovskite at different

temperatures. These materials were characterized through X-ray diffraction (XRD), thermogravimetric

analysis (TGA), N₂ physisorption, scanning electron microscopy (SEM) coupled with energy dispersive

spectroscopy (EDS), diffuse reflectance spectroscopy (DRS-UV_{vis}) and Fourier transform infrared

spectroscopy (FTIR). Results showed the formation of perovskite only at 1000°C and Nb₂O₅-CeO₂ mixed

oxides at lower temperatures with some interesting characteristics. Pechini technique allows the synthesis

of cerium niobate perovskite at lower temperatures than those presented in the literature (prepared by

different methods).

Keywords: Pechini method, Perovskite, Cerium niobate, CeNb₃O₉.

1. Introduction

Perovskites belong to a crystalline ceramic group of materials whose structure is ABO₃. Oxygen

vacancies (OV) are common in these materials and are extremely important for the oxygen ionic

conduction. They allow oxygen ions to be selectively transported by a hopping mechanism in which there

is a gradient in oxygen chemical potential. This is feasible only when the oxygen ions possess sufficient

thermal energy to overcome the energy barrier to transfer the ion [1-3]. The total positive valence of

cations A and B are equal to the total negative valence of oxygen anions. However, this is a theoretical

concept, since perovskite exists as ABO_{3±δ}, where delta represents the deficiency or excess of oxygen

Download English Version:

https://daneshyari.com/en/article/8012755

Download Persian Version:

https://daneshyari.com/article/8012755

Daneshyari.com