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In this work, we reported a facile fabrication of honeycomb-like restacking-inhibited graphene architec-
ture with open pores. The graphene exhibits superior supercapacitive performance in 6 M KOH, a high
specific capacitance of 335 F g~ can be achieved at a current density of 0.5 A g~'. This research provides
an effective, scalable, low-cost and environmental compatible methodology to fabricate crumpled gra-
phene for advanced energy storage applications.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Graphene is a two-dimensional carbon material of only one-
atom thickness with superior electronic, optical, mechanical and
thermal properties, and has attracted great attention for wide
potential applications in various fields [1-4]. Due to extremely
high electrical conductivity and high theoretical specific surface
area (2630m?g'), graphene has been considered as a very
promising material for energy storage applications [5,6]. However,
graphene easily undergo restacking, accounting for a dramatic
decrease of surface area and intrinsic property.

To date, great efforts have been devoted to exploring effective
ways to fabricate restacking-inhibited graphene, which is very
essential to realize practical applications for energy storage [7-
9]. Luo managed to transform graphene sheets into crumpled
paper-like balls by capillary compression, and the graphene balls
do not aggregate in solution or restack in solid state [10,11]. Peng
developed a rapid heating approach to produce holey graphene
powders, and found that the specific capacitance of graphene
intended to increase as more holes were created [12]. In this work,
we reported a novel facile route to fabricate the crumpled gra-
phene with open porous architecture. Furthermore, the as-
fabricated honeycomb-like graphene architecture was investigated
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as electrodes for supercapacitors, which exhibits superior energy
storage capability.

2. Experimental

Graphite oxide was prepared by a modified Hummers method
[13]. 0.1 g of graphite oxide was probe-sonicated in 50 mL of dis-
tilled water to get a homogeneous solution of graphene oxide
(GO), and then a certain amount of sodium chloride (NaCl) was
added under stirring until a sol-like mixture was obtained. The
mixture was put into a furnace that was preheated up to 300 °C.
After 30 min, the product designated as NaT-rGO was washed with
distilled water for several times, and dried at 120 °C for 12 h. For
comparison, a similar procedure was performed but without NaCl,
the product was designated as T-rGO. Additionally, the reduced
graphene oxide (rGO) was also synthesized using the hydrothermal
method that was conducted at 200 °C for 12 h in an autoclave, and
designated as Hy-rGO.

The as-prepared samples were characterized by field-emission
scanning electron microscopy (FESEM, Hitachi S4800), X-ray
diffractions (XRD, Rigaku D/Max 2500), Raman spectroscopy
(Thermo Scientific DXR), X-ray photoelectron spectroscopy (XPS,
Thermo scientific K-Alpha), thermo-gravimetric analysis (TGA, TA
Q500), and Fourier transform infrared spectroscopy (FTIR, Perkin-
Elmer Frontier). The electrochemical measurements were per-
formed in 6 M KOH using a three-electrode system that consists


http://crossmark.crossref.org/dialog/?doi=10.1016/j.matlet.2018.04.132&domain=pdf
https://doi.org/10.1016/j.matlet.2018.04.132
mailto:qxxie@yahoo.com
https://doi.org/10.1016/j.matlet.2018.04.132
http://www.sciencedirect.com/science/journal/0167577X
http://www.elsevier.com/locate/mlblue

94 Q. Xie et al./Materials Letters 225 (2018) 93-96

rGO

NaCl
crystals

-]+
- -+
|-+ 300°C
-+
-+
- -+
-+
S rGO@NaCl

o+t
L}
L}
o+
L}

H,O
N B B Spum
GO (aq.)
Fig. 1. Preparation scheme and SEM images of (a, b) rGO@NaCl, (¢) NaT-rGO and (d) T-rGO.
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Fig. 2. (a) Raman spectra and (b) FTIR spectra for the samples; the deconvoluted C1s spectra for (c) GO, (d) NaT-rGO and (e) Hy-rGO; TGA curves for the samples: (f) 30-800
°C, (g) 30-400 °C.
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