ELSEVIER

Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/mlblue

Featured Letter

A high-permittivity and low-loss $(Ba_{1-x}Nd_x)(Ti_{1-\nu-x/4}Ce_{\nu})O_3$ ceramic

Check for updates

Da-Yong Lu*, Yong-Shun Zheng

Research Center for Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, PR China

ARTICLE INFO

Article history: Received 30 November 2017 Received in revised form 24 March 2018 Accepted 2 April 2018 Available online 3 April 2018

Keywords:
Barium neodymium titanate cerate
Ceramics
Defects
Dielectrics
Electron spin resonance

ABSTRACT

 $(Ba_{1-x}Nd_x)(Ti_{1-y-x/4}Ce_y)O_3$ (BNTC) ceramics with a pseudo-cubic structure were prepared using the mixed oxide method. The dielectric-peak temperature decreased rapidly at a rate of -27 °C/at.% Nd for BNTC with y=0.05. BNTC with x=y=0.05 (BN5TC5) exhibited a high-permittivity diffuse phase transition behavior but had a higher dielectric loss ($\tan\delta=0.219$). A high-permittivity ($\varepsilon'_{RT}=14100$) and low-loss ($\tan\delta=0.014$) X7V ceramic was achieved by means of the addition of 1% Ce in BN5TC5. A g=2.509 electron spin resonance (ESR) signal associated with Ce³⁺ Kramers ions confirmed the existence of mixed valence states of Ce³⁺/Ce⁴⁺. A g=2.151 ESR signal of Nd³⁺ can be detected at room temperature after these ceramics were preserved over a long period of time.

© 2018 Published by Elsevier B.V.

1. Introduction

Neodymium (Nd) and cerium (Ce) are two most abundant elements on earth among lanthanide [1]. Their application as dopants in BaTiO₃ dielectric ceramics has bright prospects. A similar material is high-permittivity (Ba_{1-x}La_x)(Ti_{1-y-x/4}Ce_y)O₃ (x = 0.03, y = 0.05) ceramic (BL3TC5) [2,3], in which La³⁺ were substituted exclusively for A-site [4–6] and Ce exhibited slight mixed valence states of Ce³⁺/Ce⁴⁺ [7]. Cerium in BaTiO₃ is well known to exist as A-site Ce³⁺ [8], B-site Ce⁴⁺ [9], and mixed-valent Ce³⁺/Ce⁴⁺ [10]. Nd³⁺ was generally considered to be substituted for A-site [11–13], whereas a self-compensation model in (Ba_{1-x}Nd_x)(Ti_{1-x}Nd_x) O₃ [14] and a slight amphoteric behavior of Nd³⁺ in (Ba_{1-x}Nd_x) (Ti_{1-x}Ho_x)O₃ [15] were discovered. In general, the asymmetric site occupations are apt to occur in Nd- or Ce-doped BaTiO₃, i.e., that Nd³⁺ favors A-site over B-site, whereas Ce favors B-site as Ce⁴⁺ over A-site as Ce³⁺.

In this work, $(Ba_{1-x}Nd_x)(Ti_{1-y-x/4}Ce_y)O_3$ ceramics were reported. The general perspectives are to provide a novel high-permittivity and low-loss X7V $(-82\% \le (\varepsilon' - \varepsilon'_{RT})/\varepsilon'_{RT} \le +22\%$ in a temperature range -55 to 125 °C) ceramic and a new method to identify Nd^{3+} $(3d^3)$ and Ce^{3+} $(3d^1)$ Kramers ions in ceramics via the room temperature (RT) ESR technique for their mixed site occupations.

2. Experimental procedure

The initial materials were reagent-grade BaCO₃, TiO₂, CeO₂ (Kanto Chem.) and Nd₂O₃ (Wako Pure Chem.). (Ba_{1-x}Nd_x)(Ti_{1-y-x/4} Ce_y)O₃ (x = 0.03, 0.04, 0.05, y = 0.05) (BNTC5) and (x = 0.05, y = 0.06) (BN5TC6) ceramics were prepared using the mixed oxide method, as described elsewhere [2]. Final sintering was 1450 °C for 24 h in air.

Powder X-ray diffraction (XRD) data were collected at RT using a Rint 2200 X-ray diffractometer (Rigaku). Crystal structures were determined by MS Modeling (Accelry) and Cu K α_1 radiation (λ = 1.540562 Å). The microstructure was observed using a JSM-6330F scanning electron microscope (SEM) (JEOL) operated at 15 keV. Dielectric-temperature curves were measured using an AD-3521 FFT Analyzer (A&D); ac electric field: 10 V/mm; heating rate: 2 °C/min. ESR spectra were measured at RT using a JES-RE3X spectrometer (JEOL) at X-band frequency (9.148 GHz) in October 2006 and using an A300-10/12 spectrometer (Bruker) at 9.813 GHz in November 2017.

3. Results and discussion

Powder XRD patterns of BNTC5 and BN5TC6 ceramics are shown in Fig. 1. For simplicity, BNTC5 with x = 0.03, 0.04, and 0.05 are called BN3TC5, BN4TC5, and BN5TC5, respectively. These ceramic exhibited a pseudo-cubic perovskite structure. On the basis of a comparison in 12-coordinate ionic size between Ba²⁺ (1.61 Å) and Nd³⁺ (1.27 Å)/Ce³⁺ (1.34 Å) and in 6-coordinate ionic size between Ti⁴⁺ (0.605 Å) and Ce⁴⁺ (0.87 Å) [16], a decrease in

^{*} Corresponding author. E-mail address: dylu@jlict.edu.cn (D.-Y. Lu).

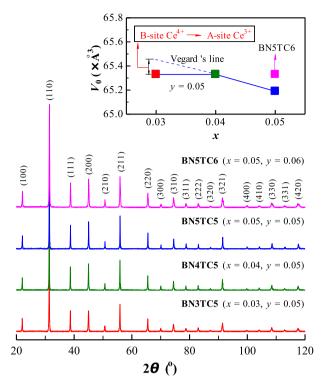


Fig. 1. Powder XRD patterns of BNTC5 and BN5TC6.

unit-cell volume (V_0) from x = 0.04 to 0.05 (Fig. 1 inset) provides evidence for the main occupations of B-site by Ce^{4+} and of A-site by Nd^{3+} . It is not easy for 6-coordinate Nd^{3+} (0.983 Å) to enter B-site because of its lager ionic size as compared to Ce^{4+} . The

abnormal decline in V_0 at x = 0.03 compared to the Vegard's line (Fig. 1 inset) is most likely caused by the occupations of A-sites by some Ce³⁺ ions. The V_0 of BN5TC6 was higher than that of BN5TC5, which further confirms that Ce ions were mainly substituted on B-sites as Ce⁴⁺.

SEM micrographs of BNTC5 and BN5TC6 are shown in Fig. 2. The thermal etching caused fracture of larger grains in BNTC5. The white particles possibly arose from liquid phases formed in sintering stage. BN5TC6 is similar to BL3TC5 in microstructure [2] and its average grain size determined by Fullman's method [2] is $1.8 \mu m$.

Temperature dependences of dielectric permittivity (ε') and dielectric loss (tan δ) for BNTC5 and BN5TC6 are shown in Fig. 3. BNTC5 exhibited a diffuse phase transition (DPT [17]) behavior. The dielectric-peak temperature $(T_{\rm m})$ decreased rapidly at a rate of -27 °C/at.% Nd (Fig. 3 inset), which is lower than that of $(Ba_{1-x}La_x)(Ti_{1-y-x/4}Ce_y)O_3$ (y = 0.05) (-30 °C/at.% La) [2]. BN5TC5 satisfied X7V specification but tan δ was very high (tan δ = 0.219) because of its semiconducting nature. A high-permittivity (ε'_{RT} = 14100) and low-loss (tan δ = 0.014) X7V ceramic was achieved in BN5TC6, indicating that the addition of 1% Ce in BN5TC5 can greatly reduce tan δ . Moreover, a comparison in ε' -Tcurves measured in 2006 and 2017 reveals that BN5TC6 possessed good ageing-resisting performance. The persistence of the shoulder at $299 \text{ cm}^{-1} \text{ [B}_1 + \text{E(TO + LO)]}$ in Raman spectrum (Fig. 4b inset) indicates local off-centering of B-cations and is consistent with the order-disorder nature of the ferroelecric-paraelecric phase transition in BaTiO₃. Some ferroelectric phases might exist in BN5TC6 and the macro-grains (Fig. 2) should play a crucial role in high-permittivity DPT behavior. The band at 834 cm⁻¹ was caused mainly by A-site Nd³⁺.

ESR spectra of BNTC5 and BN5TC6 are shown in Fig. 4. A g = 2.004 signal associated ionized Ti vacancies [18,19] was detected in 2006. The role of Ti vacancies is to apt to incorporation of larger Ce⁴⁺ ions into B-sites in sintering stage, a decrease in

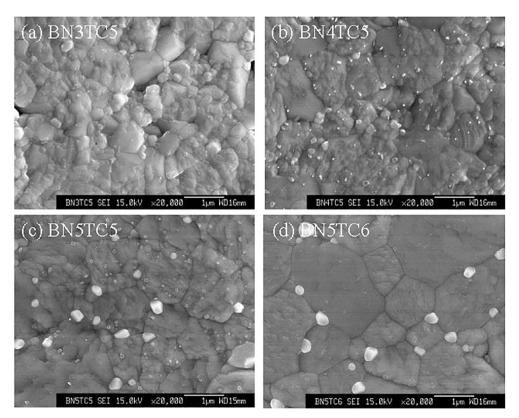


Fig. 2. SEM micrographs of the polished and thermally etched surfaces of BNTC5 with x = (a) 0.03, (b) 0.04, (c) 0.05; and (d) BN5TC6.

Download English Version:

https://daneshyari.com/en/article/8012986

Download Persian Version:

https://daneshyari.com/article/8012986

<u>Daneshyari.com</u>