Accepted Manuscript

Application of MBG as a coating material on mechanically stronger but less degradable ceramic scaffolds for enhanced osteogenesis

Dandan Ye, Wei Tang, Zhengjiang Xu, Xiaobing Zhao, Guocheng Wang

PII: S0167-577X(18)30584-6

DOI: https://doi.org/10.1016/j.matlet.2018.03.202

Reference: MLBLUE 24163

To appear in: Materials Letters

Received Date: 23 November 2017 Revised Date: 15 March 2018 Accepted Date: 31 March 2018

Please cite this article as: D. Ye, W. Tang, Z. Xu, X. Zhao, G. Wang, Application of MBG as a coating material on mechanically stronger but less degradable ceramic scaffolds for enhanced osteogenesis, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.03.202

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Application of MBG as a coating material on mechanically stronger but less

degradable ceramic scaffolds for enhanced osteogenesis

Dandan Ye^{a, b, 1}, Wei Tang^{b, 1}, Zhengjiang Xu^b, Xiaobing Zhao^{a*}, Guocheng Wang^{b*}

^a School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China

b Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese

Academy of Sciences, Shenzhen 518055, China

* Corresponding authors: gc.wang@siat.ac.cn (G.C. Wang), zhaoxiaobing@cczu.edu.cn (X.B. Zhao)

¹ These authors contributed equally to this work.

Abstract: Improving the mechanical properties and maintaining the desired degradability of the

bioceramic scaffold is always being a contradiction in the field of bone tissue engineering. To resolve this

conflict, highly degradable mesoporous bioactive glass (MBG) was homogenously coated on the

mechanically stronger hardystonite (Ca₂ZnSi₂O₇, HT) scaffolds. The presence of MBG on the scaffold

covers the shortage of the bioactive ions released from the underlying HT scaffold in the initial stage and

provides a better platform for cellular adhesion. Results proved that the HT scaffold coated with MBG

(HT/M) exhibits appealing biological properties, pointing out their potential application in bone tissue

engineering.

Keywords: hardystonite scaffold; mesoporous bioactive glass; mechanical strength; bioactive ions;

osteogenesis; ceramic

Introduction 1.

An ideal bone scaffold is required to have enough mechanical strength to maintain its structure for

the cells and tissues ingrowth at the early stage of bone healing and be replaceable by the newly formed

1

Download English Version:

https://daneshyari.com/en/article/8013047

Download Persian Version:

https://daneshyari.com/article/8013047

<u>Daneshyari.com</u>