

Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/mlblue

Featured Letter

Super wide thermal stability and giant dielectric response of $(Ba_{1-x}Bi_{0.5x}Sr_{0.5x})(Ti_{1-x}Bi_{0.5x}Sn_{0.5x})O_3$ ceramics

Xiuli Chen*, Xiaoxia Li, Gaofeng Liu, Xiao Yan, Huanfu Zhou

Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004. China

ARTICLE INFO

Article history:
Received 1 February 2018
Received in revised form 1 April 2018
Accepted 5 April 2018
Available online 6 April 2018

Keywords:
Dielectrics
Phase transformation
Thermal properties

ABSTRACT

 $(Ba_{1-x}Bi_{0.5x}Sr_{0.5x})(Ti_{1-x}Bi_{0.5x}Sn_{0.5x})O_3$ (BBSTBS, $0.02 \le x \le 0.1$) samples were prepared by a solid state reaction (SSR) method. The phase structure and dielectric properties of BBSTBS ceramics were investigated. X-ray diffraction results illustrated that BBSTBS could form a homogenous solid solution. Optimum properties with a stable ε_r (\sim 13,643–19,000), small $\Delta\varepsilon/\varepsilon_{25\,^{\circ}\text{C}}$ values (\pm 15%) over a broad temperature range from $-61\,^{\circ}\text{C}$ to 210 $^{\circ}\text{C}$ and low tan δ (\leq 0.025) from $-67\,^{\circ}\text{C}$ to 220 $^{\circ}\text{C}$ were obtained at x=0.06.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, multilayer ceramic capacitors (MLCCs) are required to possess high dielectric constant and temperature stability in a wide working temperature range due to the application in harsh conditions [1]. Therefore, EIA (the Electronic Industries Association) X7R (–55 °C to 125 °C, $\Delta\epsilon/\epsilon_{25}$ °C \leq ±15%) and X8R (–55 °C to 150 °C, $\Delta\epsilon/\epsilon_{25}$ °C \leq ±15%) cannot meet the requirements [2,3]. So, it is significant to develop materials with excellent performances [4].

It is well known that the excellent dielectric properties of BaTiO₃ perovskite have been confirmed, and the compositions of most commercial ceramic dielectrics are based on BaTiO₃ [5]. Bismuth-based dielectric ceramics have been broadly studied for their relatively low sintering temperatures and high dielectric constants [6,7]. Therefore, a series of BaTiO₃-BiMeO₃ perovskite materials have been studied for the development in a broad temperature stability MLCCs, such as BaTiO₃-Bi(Mg_{2/3}Nb_{1/3})O₃ BaTiO₃-BiScO₃ [9], $BaTiO_3 - Bi(Mg_{0.5}Zr_{0.5})O_3$ BaTiO₃-Bi(Mg_{0.5}Ti_{0.5})O₃ [11], etc. These materials showed good performances and some systems even exhibited outstanding properties with super-broad temperature stability. Therefore, BaTiO₃-based ceramics are worth to investigate in a broad temperature stability.

In our previous works, some $BaTiO_3$ -based ceramics have been investigated, such as $BaTiO_3$ -Bi $(Li_{1/3}Zr_{2/3})O_3$ [12] and $BaTiO_3$ -Bi $(Mg_{2/3}Nb_{1/3})O_3$ [13]. And many researchers have

reported that SnO_2 is an effective dopant to modify the temperature dependence of the permittivity for $BaTiO_3$ -based ceramics [14,15]. Especially, $BaTiO_3$ solid solutions were formed in a large amount of Sn, which reduced the Curie temperature and did not broaden the phase transition [16]. In this work, $(Ba_{1-x}Bi_{0.5x}Sr_{0.5x})$ $(Ti_{1-x}Bi_{0.5x}Sn_{0.5x})O_3$ composition was designed and prepared by the solid state reaction (SSR) method. Furthermore, the phase evaluation, microstructure and dielectric properties of ceramics were systematically studied.

2. Experimental

 $(Ba_{1-x}Bi_{0.5x}Sr_{0.5x})(Ti_{1-x}Bi_{0.5x}Sn_{0.5x})O_3$ (BBSTBS, $0.02 \le x \le 0.1$) ceramic samples were prepared by the solid state reaction process using the starting materials of $BaCO_3$ (99%), TiO_2 (99%), $SrCO_3$ (99%), Bi_2O_3 (99%) and SnO_2 (99.5%). Stoichiometric proportions of BT ($BaTiO_3$) and BSBS [($Bi_{0.5}Sr_{0.5}$)($Bi_{0.5}Sn_{0.5}$)O₃] were weighed and milled in alcohol medium using zirconia balls for 4 h. After drying, the powders were calcined at $1100\,^{\circ}C$ and $750\,^{\circ}C$ for 4 h in air, respectively. Then, BBSTBS compositions were weighed and milled in alcohol medium using zirconia balls for 4 h. After drying, the powders were mixed with 5% polyvinyl alcohol (PVA) and pressed into pellets with 10 mm in diameter and 1.2 mm in thickness by uniaxial pressing at a pressure of 200 MPa. The pellets were embedded with the same calcined powders to avoid elements volatilization and sintered at different temperatures for 2 h in air (1280 °C–1380 °C), depending on the content of BSBS.

X-ray diffraction (XRD) patterns were recorded at room temperature using an X-ray diffractometer (XRD, Model X'Pert

^{*} Corresponding author.

E-mail address: cxlnwpu@163.com (X. Chen).

PRO; PANalytical, Almelo, the Netherland) with CuK α radiation (λ = 0.15406 nm) operated at 40 kV and 40 mA with a step size of 0.02°. The microstructural observation of the sintered samples was performed using a scanning electron microscopy (Model JSM6380-LV SEM, JEOL, Tokyo, Japan). Silver electrodes were coated on both sides of the pellets, and then fired at 700 °C for 30 min. Dielectric properties were measured using a precision impedance analyzer (Model E4980AL, Hewlett-Packard Co, Palo Alto, CA) with an applied voltage of 500 mV over 100 Hz–1 MHz from -120 °C to 250 °C at a heating rate of 2 °C/min.

3. Results and discussion

Fig. 1 shows the XRD patterns of $(Ba_{1-x}Bi_{0.5x}Sr_{0.5x})$ $(Ti_{1-x}Bi_{0.5x}Sn_{0.5x})O_3$ $(0.02 \le x \le 0.1)$ ceramics sintered at their optimized temperatures. In Fig. 1, no second phase was observed, indicating that a homogenous solid solution was formed with $(Bi_{0.5} Sr_{0.5})^{2.5+}$ entering the Ba^{2+} sites and $(Bi_{0.5}Sn_{0.5})^{3.5+}$ occupying the Ti^{4+} sites. As $0.02 \le x \le 0.1$, a tetragonal phase was clearly presented in all samples. To give a better illustration for the phase evolution, the Raman spectra in the frequency range of

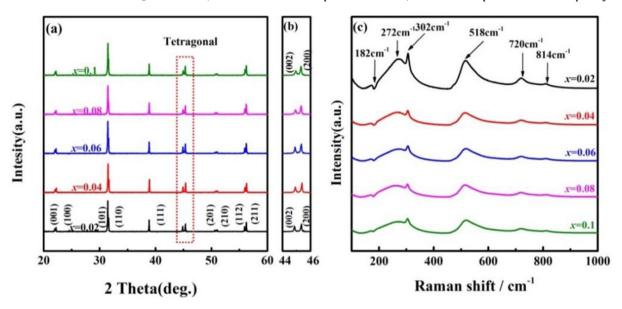
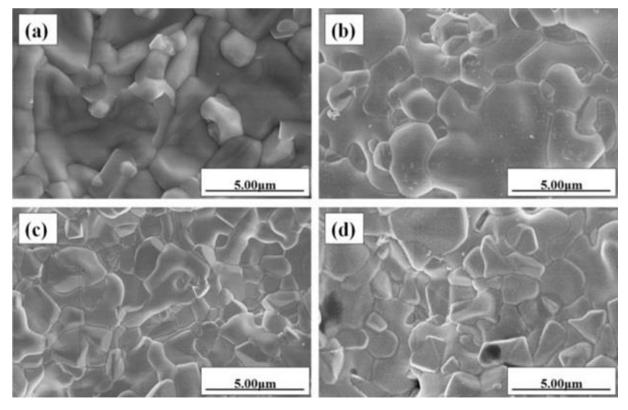



Fig. 1. (a) X-ray diffraction patterns of $(Ba_{1-x}Bi_{0.5x}Sr_{0.5x})(Ti_{1-x}Bi_{0.5x}Sn_{0.5x})O_3$ $(0.02 \le x \le 0.1)$ ceramics, (b) The enlarged XRD patterns of ceramics in the range of 2θ from 44° to 46° , (c) Room temperature Raman spectra of $(Ba_{1-x}Bi_{0.5x}Sr_{0.5x})(Ti_{1-x}Bi_{0.5x}Sn_{0.5x})O_3$ $(0.02 \le x \le 0.1)$ ceramics.

Fig. 2. SEM micrographs of $(Ba_{1-x}Bi_{0.5x}Sr_{0.5x})(Ti_{1-x}Bi_{0.5x}Sn_{0.5x})(0.02 \le x \le 0.1)$ ceramic at their optimized sintered temperatures: (a) x = 0.02, 1380 °C (b) x = 0.04, 1360 °C (c) x = 0.08, 1320 °C (d) x = 0.1, 1280 °C.

Download English Version:

https://daneshyari.com/en/article/8013055

Download Persian Version:

https://daneshyari.com/article/8013055

<u>Daneshyari.com</u>