Accepted Manuscript

Morphological change of SnO₂ crystals formed through the thermal evaporation of a mixture of Sn and graphite powders in air

Geun-Hyoung Lee

PII: S0167-577X(18)30619-0

DOI: https://doi.org/10.1016/j.matlet.2018.04.032

Reference: MLBLUE 24199

To appear in: Materials Letters

Received Date: 13 December 2017 Revised Date: 17 March 2018 Accepted Date: 6 April 2018

Please cite this article as: G-H. Lee, Morphological change of SnO₂ crystals formed through the thermal evaporation of a mixture of Sn and graphite powders in air, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet. 2018.04.032

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Morphological change of SnO_2 crystals formed through the thermal evaporation of a mixture of Sn and graphite powders in air

Geun-Hyoung Lee *

Electrical & Electronic Materials Engineering Major, Division of Advanced Materials

Engineering, Dong-eui university, 176 Eomgwangno, Busanjin-gu, Busan 614-714, Republic of

Korea

Tel/Fax:82-51-890-1722, e-mail: ghl@deu.ac.kr

Abstract

SnO₂ crystals with different morphologies were fabricated via simple thermal evaporation of a mixture of Sn and graphite powders at 1000° C in air at atmospheric pressure without any catalysts. When a mixture with a high weight ratio of graphite to Sn was used as source material, SnO₂ crystals with belt morphology were formed. The crystals had widths in the range of 2 ~ 5 μ m, and lengths up to several hundred micrometers. As the weight ratio of graphite to Sn in source material decreased, SnO₂ nanoparticles with spherical morphology were synthesized. The nanoparticles had typical diameters of $100 \sim 300$ nm. With further decreasing the weight ratio of graphite to Sn, the morphology of the SnO₂ crystals changed from particle to wire and rod. The diameters of the wire- and the rod-shaped crystals were in the range of $50 \sim 150$ nm and $0.5 \sim 1.0$ μ m, respectively. The morphology of the SnO₂ crystals could be easily changed by adjusting the ratio of Sn and graphite in source material. This reveals that the ratio of graphite and Sn in source material is a critical factor to influences the morphology of SnO₂ crystals.

Keywords: SnO₂; Nanoparticles; Thermal evaporation; Morphological change; Semiconductors.

^{*} Corresponding author. Tel: 82-51-890-1722, Fax: 82-51-890-1714, E-mail address: ghl@deu.ac.kr

Download English Version:

https://daneshyari.com/en/article/8013071

Download Persian Version:

https://daneshyari.com/article/8013071

<u>Daneshyari.com</u>