Materials Letters 222 (2018) 88-91

Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/mlblue

Featured Letter

High-performance ethanol sensors based on hematite fluffy microtubes assembled with interconnected ultrafine nanorods

Limao Cairang ^{a,b,1}, Jing Long Bai ^{b,1}, Chang Hui Zhao ^{c,1}, Bao Yu Huang ^b, Geng Zhi Sun ^d, Zhen Xing Zhang ^b, Xiao Jun Pan ^b, Jin Yuan Zhou ^{b,*}, Guo Heng Zhang ^{a,*}, Er Qing Xie ^b

^a College of Electrical Engineering, Northwest Minzu University, Lanzhou 730030, China

^b School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China

^c Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China

^d Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China

ARTICLE INFO

Article history: Received 8 February 2018 Received in revised form 23 March 2018 Accepted 28 March 2018 Available online 29 March 2018

Keywords: Semiconductors Hematite (α-Fe₂O₃) Fluffy microtubes Nanorods Sensors Ethanol

1. Introduction

Metal oxide semiconductors show great interest in the field of various sensors [1–4]. Taken hematite (α -Fe₂O₃) for instance, it has been extensively investigated as gas sensing materials because of its low-cost, environmentally friendly, and good stability [5]. However, the α -Fe₂O₃ based sensors often suffer from low response and long response/recovery time [6,7]. To improve their gas-sensing performances, one of the most common approaches is to design various micro/nano-structures of α -Fe₂O₃, such as nanoflowers [8], nanospheres [9], microspheres [10], microrods [11], and etc. Generally, the main fundamental principle in the above approach is to construct a type of nanostructures with high specific surface area, ultrafine crystalline size, and facilitated electron channels [12]. Recently, Tan et al. [13] prepared a type of porous α -Fe₂O₃ microrods, obtained high response, ultra-fast response/recovery characteristics and superior stability to ethanol. To further increase the surface area, the authors have designed a type of α -Fe₂O₃ fluffy microtubes in this work. The resultant α -

ABSTRACT

It is reported that the response is dependent on its specific surface area, and the response/recovery rates are on the electron transfer channels. In this work, the authors have designed a type of fluffy hematite (α -Fe₂O₃) microtubes. Results indicate that these fluffy α -Fe₂O₃ microtubes are highly porous and composed of interconnected ultrafine nanorods. And the assembled gas sensors show a response of 16.8 to 100-ppm ethanol gas at 260 °C, the response time is of 2 s and the recovery time is of 25 s. Moreover, the sensors also show good gas selectivity and long-term stability.

© 2018 Elsevier B.V. All rights reserved.

Fe₂O₃ fluffy microtubes are highly porous and assembled with interconnected ultrafine nanorods. Interestingly, the assembled gas sensors using these α -Fe₂O₃ microtubes show high response, fast response/recovery rates, and good stability towards ethanol.

2. Experimental section

First, a type of FeSO₄ solution was prepared by dissolving 5 mmol FeSO₄·7H₂O powder into 20 mL ethylene glycol; and another type of $H_2C_2O_4$ aqueous solution was prepared by dissolving 5 mmol H₂C₂O₄ powder in 10 mL deionized (DI) water. Second, the obtained FeSO₄ solution was quickly added into H₂C₂O₄ aqueous solution under vigorous stirring at 40 °C to form a type of yellow homogeneous mixture solution. Subsequently, this mixture solution was transferred into a 50 mL Teflon-lined stainless-steel autoclave, which was heated to 150 °C and kept for 12 h. After cooling down naturally, a type of yellow FeC₂O₄·2H₂O precipitate was collected via centrifugation, washing using DI water, and drying at 60 °C in a vacuum oven. Third, 0.15 g FeC₂O₄·2H₂O powder was dispersed in 20 mL of 5 M NaOH aqueous solution, following by vigorous stirring for 1 h. Then a type of dark green Fe(OH)₂ powder product was collected via centrifugation, washing using DI water, and drying at 60 °C in a vacuum oven. Finally, a type of rufous

^{*} Corresponding authors.

E-mail addresses: zhoujy@lzu.edu.cn (J.Y. Zhou), zhgh0325@qq.com (G.H. Zhang).

¹ These authors contributed equally to this work.

 Fe_2O_3 powder was obtained via annealing $Fe(OH)_2$ powder at 400 $^\circ C$ in air for 30 min.

The samples were studied by X-ray diffraction (XRD, Philips X'Pert Pro), field emission scanning electron microscope (FESEM, Hitachi, S4800), high-resolution transmission electron microscope (HRTEM, FEI, Tecnai G2 F30, equipped with energy dispersive X-ray spectroscopy (EDX) system), X-ray photoelectron spectroscopy (XPS, PHI-5702), and Brunauere- Emmette-Teller system (Micrometrics, ASAP 2010).

3. Results and discussion

It is reported that α -Fe₂O₃ nanosheets can be synthesized via interfacial-reaction between FeC₂O₄ nanorods and NaOH [14]. Thus, a type of α -Fe₂O₃ fluffy microtubes constructed with ultra-

fine nanorods was designed as shown in Fig. 1. First, a type of yellowy FeC₂O₄·2H₂O nanorods was prepared by mixing solutions of Fe²⁺ and C₂O₄⁻⁻ ions. Then the OH⁻ was employed to etch and react with Fe²⁻ ions, achieving dark green Fe(OH)₂ fluffy microtube intermediates. Finally, the collected Fe(OH)₂ fluffy microtubes can be oxidized/decomposed into a type of rufous α -Fe₂O₃ via annealing at 400 °C in air.

The morphology changes from the obtained FeC₂O₄:2H₂O precursors to α -Fe₂O₃ products can be observed by FESEM and HRTEM. After the hydrothermal reaction, the formed yellowy FeC₂-O₄ precursors are comprised of uniform and smooth nanorods with a prism shape (Fig. 2(a)). These nanorods are 10–15 µm in length and ~500 nm in diameter (inset of Fig. 2(a)). After etched and reacted with NaOH and annealed in air, the smooth FeC₂O₄ nanorods were converted into a type of fluffy microtubes of α -Fe₂O₃ (Fig. 2(b)). These fluffy microtubes possess a diameter of ~1 µm

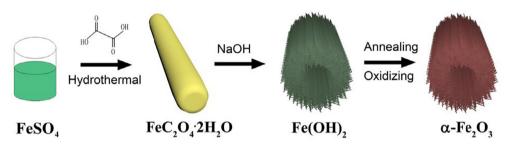
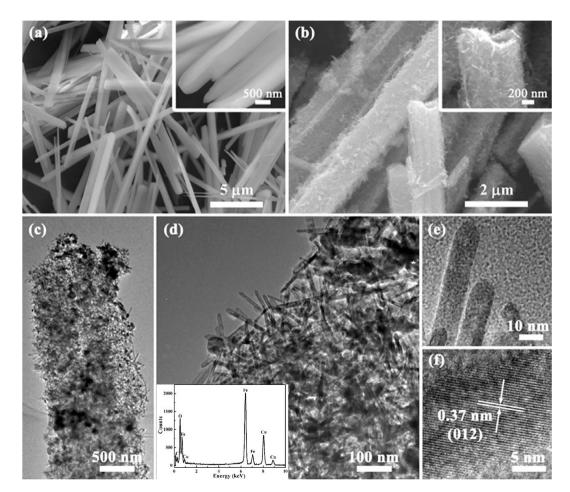



Fig. 1. Formation process of α -Fe₂O₃ fluffy microtubes.

Fig. 2. (a and b) SEM images of FeC₂O₄ precursors and α -Fe₂O₃ product, respectively, the insets shows the corresponding magnified images. (c and d) TEM images of α -Fe₂O₃ fluffy microtubes, (e) TEM and (f) HRTEM images of α -Fe₂O₃ nanorods.

Download English Version:

https://daneshyari.com/en/article/8013230

Download Persian Version:

https://daneshyari.com/article/8013230

Daneshyari.com