Accepted Manuscript

Highly KOH Doped para-Polybenzimidazole Anion Exchange Membrane and its Performance in Pt/Ti_nO_{2n-1} Catalyzed Water Electrolysis Cell

Hristo Penchev, Galin Borisov, Elitsa Petkucheva, Filip Ublekov, Vesselin Sinigersky, Ivan Radev, Evelina Slavcheva

PII: S0167-577X(18)30458-0

DOI: https://doi.org/10.1016/j.matlet.2018.03.094

Reference: MLBLUE 24055

To appear in: *Materials Letters*

Received Date: 19 February 2018 Revised Date: 12 March 2018 Accepted Date: 17 March 2018

Please cite this article as: H. Penchev, G. Borisov, E. Petkucheva, F. Ublekov, V. Sinigersky, I. Radev, E. Slavcheva, Highly KOH Doped para-Polybenzimidazole Anion Exchange Membrane and its Performance in Pt/Ti_nO_{2n-1} Catalyzed Water Electrolysis Cell, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.03.094

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Highly KOH Doped para-Polybenzimidazole Anion Exchange Membrane and its Performance in Pt/Ti_nO_{2n-1} Catalyzed Water Electrolysis Cell

Hristo Penchev^{1*}, Galin Borisov², Elitsa Petkucheva², Filip Ublekov¹, Vesselin Sinigersky¹, Ivan Radev^{2, 3}, Evelina Slavcheva^{2*}

¹Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

²Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria³ Zentrum für BrennstoffzellenTechnik ZBT GmbH, Duisburg, Germany

*Corresponded authors:

^{1*}H. Penchev: hpen4ev@gmail.com

^{2*}E. Slavcheva: eslavcheva@gmail.com

Keywords: water electrolysis, non-stoichiometric titanium oxide, para-polybenzimidazole membrane, alkali doped

Abstract

In this study we report the preparation and properties of KOH doped para-polybenzimidazole membrane as anion conducting polymer electrolyte for application in water electrolysis cell. The membrane demonstrated an outstanding OH conductivity measured by electrochemical impedance spectroscopy, which depending on the relative humidity varies in the range 298 to 1140 mS.cm⁻¹. The membrane electrode assembly prepared with this membrane and a novel noncarbon supported Pt catalyst were tested in a single electrolysis cell at close to real operation conditions both at room and at 80°C. The results obtained showed low overpotentials concerning both partial reactions and a stable electrochemical performance at cell voltage of 2.2 V. The enhanced efficiency of the electrolysis has been attributed to the combined effects of the high membrane conductivity, the homogeneous distribution and small size of the catalytic particles, and the corrosion resistance of the selected catalyst support.

Download English Version:

https://daneshyari.com/en/article/8013426

Download Persian Version:

https://daneshyari.com/article/8013426

<u>Daneshyari.com</u>