## Accepted Manuscript

Unary- or binary-plasmonic nanoparticle-assemblies formed within hollow silica particles with a surfactant-assisted method

Haruyuki Ishii, Yohei Ishikawa, Daisuke Nagao, Mikio Konno

PII: S0167-577X(18)30477-4

DOI: https://doi.org/10.1016/j.matlet.2018.03.126

Reference: MLBLUE 24087

To appear in: Materials Letters

Received Date: 22 December 2017 Revised Date: 26 February 2018 Accepted Date: 17 March 2018



Please cite this article as: H. Ishii, Y. Ishikawa, D. Nagao, M. Konno, Unary- or binary-plasmonic nanoparticle-assemblies formed within hollow silica particles with a surfactant-assisted method, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.03.126

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Unary- or binary-plasmonic nanoparticle-assemblies formed

within hollow silica particles with a surfactant-assisted method

Haruyuki Ishii, Yohei Ishikawa, Daisuke Nagao\*, Mikio Konno

Department of Chemical Engineering, Graduate School of Engineering, Tohoku University,

6-6-07 Aoba, Aramaki-aza Aoba-ku, Sendai, 980-8579 Japan

\*Corresponding Author

E-mail: dnagao@tohoku.ac.jp

Tel:+81-22-795-7239, Fax: +81-22-795-7241

**Abstract** 

In this study, a surfactant-assisted method was employed to successfully prepare

plasmonic nanoparticle assemblies encapsulated in hollow silica particles. In this method, silica

was precipitated in the presence of plasmonic nanoparticles with single nanometer sizes and an

anionic surfactant, sodium oleate (NaOA). The absorption peak of the composite particles was

red-shifted compared with that for the well-dispersed suspension of the plasmonic nanoparticles.

The extent of red-shift was easily tuned by changing the concentration of nanoparticles

incorporated in the hollow silica particles. A binary-nanoparticle assembly, comprising gold and

silver nanoparticles, was also prepared. Hence, this method can be extended to the design of

novel multifunctional particles based on different nanoparticle assemblies.

**Keywords:** Colloidal nanoparticle assembly, Plasmonic nanoparticle,

Surfactant-assisted method, Hollow silica particle, Binary nanoparticle assembly

1

## Download English Version:

## https://daneshyari.com/en/article/8013529

Download Persian Version:

https://daneshyari.com/article/8013529

Daneshyari.com