Accepted Manuscript

Mussel-inspired synthesis of barium titanate@poly(dopamine)@graphene oxide multilayer core-shell hybrids for high-performance dielectric elastomer actuator

Mengnan Ruan, Dan Yang, Wenli Guo, Liqun Zhang, Yibo Wu, Shuxin Li

PII: S0167-577X(18)30244-1

DOI: https://doi.org/10.1016/j.matlet.2018.02.038

Reference: MLBLUE 23864

To appear in: *Materials Letters*

Received Date: 1 November 2017 Revised Date: 14 January 2018 Accepted Date: 10 February 2018

Please cite this article as: M. Ruan, D. Yang, W. Guo, L. Zhang, Y. Wu, S. Li, Mussel-inspired synthesis of barium titanate@poly(dopamine)@graphene oxide multilayer core-shell hybrids for high-performance dielectric elastomer actuator, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.02.038

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

 $Mussel-inspired\ synthesis\ of\ barium\ titanate@poly(dopamine)@graphene\ oxide$

multilayer core-shell hybrids for high-performance dielectric elastomer actuator

Mengnan Ruan^{ab}, Dan Yang^b*, Wenli Guo^{ab}*, Liqun Zhang^a, Yibo Wu^b, Shuxin Li^b

^aDepartment of Materials Science and Engineering, Beijing University of Chemical Technology,

Beijing 100029, China

^bBeijing Key Lab of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical

Technology Beijing 102617, China

Tel: 86-10-81292011. E-mail: D. Yang (yangdan@bipt.edu.cn) or W. Guo (gwenli@bipt.edu.cn)

Abstract: Novel barium titanate@poly(dopamine)@graphene oxide (from inner to outer)

(denoted as BT@PDA@GO) multilayer core-shell hybrids were synthesized in this study. Then,

the BT@PDA@GO multilayer core-shell hybrids were incorporated into NBR matrix to prepared

dielectric elastomer composite. The results showed that the dielectric constant of NBR composite

filled with BT@PDA@GO hybrids reached to 15 at 1 kHz, which was about 170% times larger

than that of pure NBR, whereas the dielectric loss was just about 0.02 at 1 kHz. In addition, the

BT@PDA@GO/NBR composite exhibited a large actuated strain of 8.6% at electric field of 35

kV/mm, about 200% times of pure NBR (4.2%) at the same electric field. This research might

help to establish a new strategy to obtain a high performance dielectric elastomer actuator.

Keywords: multilayer core-shell hybrids; dielectric elastomer; elastic modulus; dielectric constant;

actuated strain

1

Download English Version:

https://daneshyari.com/en/article/8013726

Download Persian Version:

https://daneshyari.com/article/8013726

Daneshyari.com