Accepted Manuscript

MoS₂-Sb₂O₃ film exhibiting better oxidation-resistance in atomic oxygen environment

Xiaoming Gao, Ming Hu, Yanlong Fu, Desheng Wang, Dong jiang, Lijun Weng, Weimin Liu, Jiayi Sun

PII: S0167-577X(18)30307-0

DOI: https://doi.org/10.1016/j.matlet.2018.02.093

Reference: MLBLUE 23919

To appear in: Materials Letters

Received Date: 21 November 2017 Revised Date: 17 January 2018 Accepted Date: 19 February 2018

Please cite this article as: X. Gao, M. Hu, Y. Fu, D. Wang, D. jiang, L. Weng, W. Liu, J. Sun, MoS₂-Sb₂O₃ film exhibiting better oxidation-resistance in atomic oxygen environment, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.02.093

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

MoS₂-Sb₂O₃ film exhibiting better oxidation-resistance in atomic oxygen environment

Xiaoming Gao, Ming Hu, Yanlong Fu, Desheng Wang, Dong jiang, Lijun Weng, Weimin Liu,

Jiayi Sun*

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China

*Corresponding author. E-mail: sunjy@licp.cas.cn

Abstract: The microstructure and wear resistance of sputtered MoS₂ films can be improved by adding some amount of metals. However, the oxidation-resistance of MoS₂-metals films would be worried because some metals are sensitive to atomic oxygen (AO). In this paper, the inert Sb₂O₃ was introduced into the MoS₂ film, and its effect on the structure and anti-oxidation ability of the MoS₂ film was clarified. XRD and SEM results revealed that due to the addition of Sb₂O₃, the growth of MoS₂ micro-platelets was almost suppressed, and so the composite film was amorphous and very compact. XPS analysis indicated that for the composite film, the influence by the AO irradiation was restricted into the film surface layer. Namely, the composite film exhibited a better anti-oxidation ability in the AO environment.

Keywords: Physical vapour deposition; Thin films; Structural; Atomic oxygen; Oxidation

1. Introduction

Sputtered MoS_2 films have been widely used as solid lubricants in space technology, but the wear resistances are limited due to the characteristic porous columnar microstructure [1]. Therefore, different metals have been introduced into the

Download English Version:

https://daneshyari.com/en/article/8013837

Download Persian Version:

https://daneshyari.com/article/8013837

<u>Daneshyari.com</u>