ELSEVIER

Contents lists available at ScienceDirect

## **Materials Letters**

journal homepage: www.elsevier.com/locate/mlblue



# A novel temperature-stable and low-loss microwave dielectric composite ceramics Li<sub>2</sub>Mg<sub>3</sub>SnO<sub>6</sub>-SrTiO<sub>3</sub>



Zhifen Fu<sup>a</sup>, Jianli Ma<sup>a,\*</sup>, Peng Liu<sup>b,\*</sup>

- <sup>a</sup> College of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
- <sup>b</sup> College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China

#### ARTICLE INFO

Article history:
Received 10 November 2017
Received in revised form 9 January 2018
Accepted 27 January 2018
Available online 20 February 2018

Keywords:
Dielectric properties
Microstructure
Li<sub>2</sub>Mg<sub>3</sub>SnO<sub>6</sub>
Ceramics

#### ABSTRACT

Phase structure, microstructure and microwave dielectric properties of temperature-stable (1-x) Li<sub>2</sub>Mg<sub>3</sub>SnO<sub>6</sub>-xSrTiO<sub>3</sub> (x = 0.08, 0.12, 0.16, 0.20, 0.24, 0.28) composite ceramics were investigated. The results showed that ceramics contain Li<sub>2</sub>Mg<sub>3</sub>SnO<sub>6</sub> and SrTiO<sub>3</sub> phases and well-densified microstructure were obtained at 1375 °C. The microwave dielectric properties strongly depended on SrTiO<sub>3</sub> content x. With increasing x, the dielectric constant ( $\varepsilon_r$ ) increased from 11.0 to 17.0, the quality factor ( $Q \times f$ ) decreased from 105,100 GHz to 30,770 GHz, and the temperature coefficient of resonant frequency ( $\tau_f$ ) significantly increased from -35.4 ppm/°C to 37.3 ppm/°C. 0.8Li<sub>2</sub>Mg<sub>3</sub>SnO<sub>6</sub>-0.2SrTiO<sub>3</sub> composite ceramics displayed a higher relative density of 97.2% and well microwave dielectric properties of  $\varepsilon_r$  = 14.2,  $Q \times f$  = 67,260 GHz,  $\tau_f$  = -4.8 ppm/°C.

© 2018 Elsevier B.V. All rights reserved.

#### 1. Introduction

With developing wireless communication, microwave dielectric ceramics with a low dielectric constant ( $\varepsilon_r$ ), ultrahigh quality factor  $(Q \times f)$  and near-zero temperature coefficient of resonant frequency ( $|\tau_f| < 10 \text{ ppm/}^{\circ}\text{C}$ ) are strongly required [1–3]. Recently, Li-containing compounds such as  $Li_2CeO_3$ ,  $Li_2WO_4$ ,  $Li_2MO_3$ (M = Ti, Sn, Zr),  $\text{Li}_2A\text{Ti}_3\text{O}_8(A = \text{Mg}, \text{Zn})$ ,  $\text{Li}_3A\text{O}_4(A = \text{Nb}, \text{Ta}, \text{Sb})$ ,  $\text{Li}_2\text{Mg}_3B\text{O}_6$ (B = Ti, Sn, Zr) have gained many investigated due to their excellent microwave dielectric properties and lower sintering temperatures [4–9]. Among them, Li<sub>2</sub>Mg<sub>3</sub>SnO<sub>6</sub> ceramics, with face centered cubic rock salt structure [10], have been attracted increasing interest because of its out-bound microwave dielectric properties of  $\varepsilon_r = 8.8$ ,  $Q \times f = 123,000$  GHz,  $\tau_f = -32$  ppm/°C [9]. However, its larger  $\tau_f$  value and porous microstructures hindered their practical applications. Some research has made inhibition Li-volatilization in order to obtain well-densified microstructure by using low melting fluorides, Li-rich or burying the samples in Li-containing sacrificial powder [11–14]. Further studies of Li<sub>2</sub>Mg<sub>3</sub>  $SnO_6$  ceramics about its larger  $\tau_f$  value were not found.  $SrTiO_3$  has been reported as an effectively compensator in several diphasic systems due to its large positive f value ( $\sim$ +1650 ppm/ $^{\circ}$ C) and good microwave dielectric properties of  $\varepsilon_r$  = 290, Q × f = 4800 GHz [15-17]. So, one can be expected that a diphasic composite

E-mail addresses: jianlima2005@126.com (J. Ma), liupeng@snnu.edu.cn (P. Liu).

material with a near-zero  $_f$  value and high Q may be obtained by combining  $SrTiO_3$  with  $Li_2Mg_3SnO_6$ .

In this paper,  $SrTiO_3$  was employed as an  $_f$  compensator for  $Li_2Mg_3SnO_6$  ceramics. The effects of  $SrTiO_3$  on the crystal compositions, microstructures and microwave dielectric properties of  $(1-x)Li_2Mg_3TiO_6$ - $xSrTiO_3$  composite ceramics were investigated systematically.

#### 2. Experimental procedure

Li<sub>2</sub>Mg<sub>3</sub>SnO<sub>6</sub> and SrTiO<sub>3</sub> powders were prepared by a conventional solid-state reaction route using Li<sub>2</sub>CO<sub>3</sub> (98.0%), MgO (99.99%), SnO<sub>2</sub> (99.5%), TiO<sub>2</sub> (99.99%) and SrCO<sub>3</sub> (99.9%) powders as starting materials. Stoichiometric Li<sub>2</sub>CO<sub>3</sub>-MgO-SnO<sub>2</sub> and SrCO<sub>3</sub>-TiO<sub>2</sub> were mixed according to the formula of Li<sub>2</sub>Mg<sub>3</sub>SnO<sub>6</sub> and SrTiO<sub>3</sub>, respectively. In order to synthesize Li<sub>2</sub>Mg<sub>3</sub>SnO<sub>6</sub> and SrTiO<sub>3</sub> powders, the mixtures were ball-milled in ethanol for 8 h using zirconia balls, and then calcined at 1000 °C for 4 h in an alumina crucible in air. Subsequently,  $(1 - x)\text{Li}_2\text{Mg}_3\text{SnO}_6$ - $x\text{SrTiO}_3$  (x = 0.08, 0.12, 0.16, 0.20, 0.24, 0.28) mixtures were prepared by mixing Li<sub>2</sub>Mg<sub>3</sub>SnO<sub>6</sub> and SrTiO<sub>3</sub> powders at different weight ratios. The mixtures were re-milled for 8 h using ZrO<sub>2</sub> balls in an alcohol medium. The milled powders were dried, mixed with 5 wt% PVA as a binder, and then screened with a 120 mesh. Subsequently, the powders were pressed into cylindrical disks (11.5 mm in diameter and about 6 mm in height) under a pressure of 200 MPa. Before sintering at 1350-1400 °C on alumina plates in

<sup>\*</sup> Corresponding authors.

air for 4 h, all the pellets were pretreated at 550 °C in air for 2 h to expel the binder. In order to prevent the evaporation of Li in the sintering process, all the pellets were covered with the sacrificial powders, which were composed by  $\rm Li_2Mg_3SnO_6\text{-}SrTiO_3$  mixing powders.

The crystal structures were analyzed using X-ray diffraction (XRD) with  $\text{CuK}_{\alpha}$  radiation (Rigaku D/MAX2550, Tokyo, Japan). The microstructures were investigated using a scanning electron microscope (SEM, Quantax200, FEI Company, Eindoven, Holland) coupled with energy dispersive X-ray spectroscopy (EDS). The bulk densities of the sintered samples were measured by Archimedes method. Microwave dielectric properties of the specimens were measured using a network analyzer (ZVB20, Rohde & Schwarz, Munich, Germany) with the TE01 shielded cavity method. The temperature coefficient resonant frequency  $(\tau_f)$  was calculated with the following formula:



**Fig. 1.** XRD patterns of (1 - x)Li<sub>2</sub>Mg<sub>3</sub>SnO<sub>6</sub>-xSrTiO<sub>3</sub> ceramics sintered at 1375 °C as a function of x.

$$\tau_f = \frac{(f_2 - f_1) \times 10^6}{f_1(T_2 T_1)} \tag{1}$$

Where  $f_1$  and  $f_2$  are the resonant frequency at  $T_1$ , and  $T_2$ , respectively.

#### 3. Results and discussion

Fig. 1 shows XRD patterns of  $(1 - x)\text{Li}_2\text{Mg}_3\text{SnO}_6$ -xSrTiO<sub>3</sub> ceramics sintered at 1375 °C as a function of x. As shown in Fig. 1(a), a two-phase system with a rock-salt structure Li<sub>2</sub>Mg<sub>3</sub>SnO<sub>6</sub> phase



**Fig. 3.** The relative density, weight loss and microwave dielectric properties in  $(1 - x) \text{Li}_2 \text{Mg}_3 \text{SnO}_6$ -xSrTiO<sub>3</sub> ceramics as a function of x.



Fig. 2. SEM images of (1 - x)Li<sub>2</sub>Mg<sub>3</sub>SnO<sub>6</sub>-xSrTiO<sub>3</sub> ceramics sintered at 1375 °C: (a) x = 0.08, (b) x = 0.12, (c) x = 0.16, (d) x = 0.20, (e) x = 0.24, (f) x = 0.28.

### Download English Version:

# https://daneshyari.com/en/article/8013995

Download Persian Version:

https://daneshyari.com/article/8013995

**Daneshyari.com**