Accepted Manuscript

Improving Luminescent Penetrability By ${\rm Tm^{3+}/Ce^{3+}}$ Doped ${\rm Y_2O_3}$ Nanocrystals For Optical Imaging

Chengguo Ming, Manting Pei, Xiaobin Ren, Ning Xie, Yuanxue Cai, Yueting Qin, Fengying Yuan, Gangzhi Wang, Liqun An, Feng Song

PII: S0167-577X(18)30187-3

DOI: https://doi.org/10.1016/j.matlet.2018.01.169

Reference: MLBLUE 23817

To appear in: Materials Letters

Received Date: 24 December 2017 Revised Date: 27 January 2018 Accepted Date: 30 January 2018

Please cite this article as: C. Ming, M. Pei, X. Ren, N. Xie, Y. Cai, Y. Qin, F. Yuan, G. Wang, L. An, F. Song, Improving Luminescent Penetrability By Tm³⁺/Ce³⁺ Doped Y₂O₃ Nanocrystals For Optical Imaging, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.01.169

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Improving Luminescent Penetrability By Tm³⁺/Ce³⁺ Doped

Y₂O₃ Nanocrystals For Optical Imaging

Chengguo Ming,^{1,*} Manting Pei^{1,2}, Xiaobin Ren¹, Ning Xie¹, Yuanxue Cai¹, Yueting Qin¹, Fengying Yuan¹, Gangzhi Wang¹, Liqun An¹, Feng Song³

¹Physics Department, School of Science, Tianjin University of Science & Technology, Tianjin 300457, China

²School of Material Science and Chemical Engineering, Tianjin University of Science & Technology, Tianjin 300457, China

³The Key Laboratory of Weak Light Nonlinear Photonics , Ministry of Education, Nankai University, Tianjin 300457, China

Abstract:

We prepared the Y_2O_3 nanocrystals doped with Tm^{3+} and Ce^{3+} ions by the sol-gel method. The luminescence lifetimes, excitation and emission spectra have been studied in detail. The Tm^{3+}/Ce^{3+} doped Y_2O_3 nanocrystals can emit strong 813nm infrared with the excitation of 698nm red light. The excitation wavelength at 698nm and emission wavelength at 813nm are located in the weak absorption area of biological tissues, which can enhance the quality of optical imaging.

Keywords: Luminescence materials; Rare earth ions; Optical imaging

1. Introduction

Trivalent lanthanide ions own abundant energy level structures and excellent spectral characters in the visible and infrared wavelength regions[1-10]. Luminescent materials doped with rare earth ions have been applied to optical technology and bio-medicine domains[12-14]. In recent years, optical imaging has been widely studied as a detection method to biological molecules, cells and tissues, which can color code the molecular variability and heterogeneity of diseased tissues in vivo, and be propitious to improve diagnostic accuracy and image-guidance for surgical resection. In order to improve the imaging quality and penetration depth of optical imaging, people have attempted a lot of ways[15-21]. Because the tissue has lower luminescent absorption in the 650-950nm wavelength region, it is interest that both excitation wavelength and emission wavelength of the luminescence probe locate in

^{*} E-mail: mingchengguo1978@163.com, Tel:+86-22-2350-3620, Fax: +86-22-2350-1743

Download English Version:

https://daneshyari.com/en/article/8014018

Download Persian Version:

https://daneshyari.com/article/8014018

<u>Daneshyari.com</u>