Accepted Manuscript

Minimal layer graphene/TiO₂ nanotube membranes used for enhancement of UV photodetectors

Suttinart Noothongkaew, Orathai Thumthan, Ki-Seok An

PII: DOI: Reference:	S0167-577X(18)30229-5 https://doi.org/10.1016/j.matlet.2018.02.033 MLBLUE 23859
To appear in:	Materials Letters
Received Date: Revised Date: Accepted Date:	28 November 20174 February 20186 February 2018

Please cite this article as: S. Noothongkaew, O. Thumthan, K-S. An, Minimal layer graphene/TiO₂ nanotube membranes used for enhancement of UV photodetectors, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.02.033

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Minimal layer graphene/TiO₂ nanotube membranes used for enhancement of UV photodetectors

Suttinart Noothongkaew^{a*}, Orathai Thumthan^b, and Ki-Seok An^c

^{a,b}Department of Physics, Faculty of Science, Ubon Ratchathani University, 34190, Thailand ^cThin Film Materials Research Group, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 305-600, Republic of Korea

Keywords: Titanium oxide, Graphene, Nanotubes, Ultraviolet photodetectors

Abstract. Vertically aligned titanium dioxide (TiO₂) nanotubes (NTs) and graphene/TiO₂ NTs were fabricated on transparent substrate by anodization of Ti foil. TiO₂ NTs in anatase phase with and without graphene films coated on their surface were confirmed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and Raman spectra. Enhancement of photocurrent and good responsivity of the graphene/TiO₂ NT devices were observed as compared with pure-TiO₂ NT devices. At the interface, the electrons will transfer from TiO₂ to graphene due to the difference in energy levels of the two materials. The heterojunction was formed there, and the photo-excited electron-hole pairs could hinder the charge recombination. The graphene/TiO₂ NT devices have high potential for ultraviolet (UV) photodetectors with the possibility to fine-tune properties, and it is worth of further investigation.

1. Introduction

Recently, special interest has been focused on titanium dioxide (TiO₂) nanostructures such as nanowires, nanorods, and nanotubes. These structures have a large surface area to volume ratio, long term stability, non-toxicity, low cost, and broad functionality which generating great interest in potential applications. Among these nanostructures, TiO₂ nanotubes (NTs) are a prominent material due to their vertically oriented and highly ordered structure. TiO₂ NT arrays have been extensively studied for their applications in sensors for hydrogen, oxygen, humidity, and glucose [1-5]. It found that TiO₂ NT-based sensors usually exhibit high performance with low detection limit, high stability, good reproducibility, and fast response. One of the important applications for TiO₂ NTs is for efficient ultraviolet (UV) photo-detection which is crucial for space communication, ozone layer monitoring, flame sensing, and so on. TiO₂ is a wide band gap 3.2 eV for anatase phase and 3.0 eV for rutile phase [6]. Due to its wide band gap, it is only sensitive to the light with wavelengths below 380 nm which belong to the UV region [7]. This supports that TiO₂ nanostructures are suitable for UV detection against a background with infrared and visible light. Due to the large surface to volume ratio and exceptional properties of TiO₂ nanostructures, many researchers are interested in UV photodetectors based on TiO₂ nanostructures [1]. Further, it has also been suggested that the heterojunction based on TiO₂ NTs can improve the performance of photodetectors as compared to pure TiO₂ NTs [8-11].

Graphene has increasingly attracted an attention for different applications in recent years due to its high surface area, transparency, high carrier mobility, mechanical flexibility, good interfacial contact with adsorbents and so forth [12-16]. Therefore, graphene is widely used in optoelectronic and photonic devices where graphene based devices proved effective in such areas as photoelectric, photo thermoelectric, etc. In terms of electromechanical properties, graphene makes a great contribution to the enhancement of the performance of the devices. Therefore, it is a preferable material for improvement of the heterojunction-based photodetectors in a broad-wavelength range. At the interface of the heterojunction-based devices, graphene/TiO₂ devices, electrons transfer from TiO₂ to graphene because of the difference in energy levels of the two materials. Consequently, the heterojunction is formed at the interface, and it hinders the charge recombination of the photo-excited electron-hole pairs. The results lead many researchers to further investigation of graphene-TiO₂ nanostructure-based UV photodetectors.

Generally, there are three methods used to fabricate TiO_2 NTs; template synthesis [16], hydrothermal methods [17-18], and electrochemical synthesis (anodization of Ti foil). Of all the methods, electrochemical anodization is the most popular method for synthesis of TiO_2 nanostructures due to uniformity in diameter, high quality, and superior alignment of the tubes. Free standing TiO_2 NTs were easily obtained by this method. The free standing TiO_2 nanotubes would be flexible allowing for a variety of applications and it can be attached onto foreign substrates [19].

In this work, we report the fabrication of a high density of TiO_2 NTs that were fabricated by anodization of Ti foils. Subsequently, TiO_2 membranes were transferred onto ITO substrates. This method allows film production on other substrates. The UV photodetectors based on TiO_2 NTs on transparent substrate coated with a few layers of graphene film will be reported in this paper. However, to our best knowledge, there are few reports about the graphene/ TiO_2 NTs on transparent glass substrate. We found that the UV photodetector devices are highly sensitive to 365 nm UV light and also the graphene/ TiO_2 NT devices can enhance the responsivity and photocurrent gain as compared to pristine- TiO_2 NTs devices.

2. Experimental details

TiO₂ NTs were grown on a Ti foil by anodization. The anodization process was divided into three parts. The 1st anodizing, a cleaned Ti foil was anodized in a mixture of 0.3 wt. % NH₄F, 97.7 wt. % ethylene glycol and 2 wt. %

Download English Version:

https://daneshyari.com/en/article/8014125

Download Persian Version:

https://daneshyari.com/article/8014125

Daneshyari.com