Accepted Manuscript

Ruddlesden-Popper type $\text{La}_2\text{NiO}_{4+\delta}$ oxide as a pseudocapacitor electrode

Zhongsheng Sang, Wei Che, Shengbing Yang, Yihui Liu

PII: S0167-577X(18)30039-9

DOI: https://doi.org/10.1016/j.matlet.2018.01.030

Reference: MLBLUE 23678

To appear in: Materials Letters

Received Date: 26 July 2017

Revised Date: 20 December 2017 Accepted Date: 6 January 2018

Please cite this article as: Z. Sang, W. Che, S. Yang, Y. Liu, Ruddlesden-Popper type $La_2NiO_{4+\delta}$ oxide as a pseudocapacitor electrode, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.01.030

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Ruddlesden-Popper type $La_2NiO_{4+\delta}$ oxide as a pseudocapacitor electrode

Zhongsheng Sang^{a,b}‡, Wei Che^a‡, Shengbing Yang^a, Yihui Liu^{a*}

^a Hubei Key Laboratory of Advanced Technology for Automotive Components &

Hubei Collaborative Innovation Center for Automotive Components Technology

(Wuhan University of Technology), Wuhan 430070, China

^b School of Materials Science and Engineering, Wuhan University of Technology, Wuhan

430070, China

Abstract

Ruddlesden-Popper type $La_2NiO_{4+\delta}$ (LNO) oxide was investigated as a novel

pseudocapacitive electrode and performed high performance with the capacitance of 657.4

F·g⁻¹ under the scan rate of 2 mV·s⁻¹ in 3 M KOH electrolyte. Two cathodic peaks and one

anodic peak in CV curves of LNO in KOH electrolyte indicate the special oxygen

insertion/extrusion processes because its structure alternates with perovskite LaNiO₃ layers

and LaO rock-salt layers in succession. Cycle performance of LNO at a relatively high

current density of 10 A·g⁻¹ is approximately 96.2% after 500 cycles in 3 M KOH electrolyte,

showing good cycling stability. This confirms LNO as a potential candidate for high

performance pseudocapacitor electrodes.

Keywords: Ruddlesden-Popper; La₂NiO_{4+ δ}; Pseudocapacitor; Oxygen insertion/extrusion;

X-ray techniques.

1. Introduction

According to the charge mechanism, supercapacitors include two different kinds as

double-layer supercapacitors and pseudocapacitors[1]. Fast reversible intercalation of ions

into the bulk of the material, redox reactions on the surface of electrode and adsorption of

ions from electrolyte are widely accepted three types of charge storage mechanisms for

*Corresponding author.

Email: liuyihui@whut.edu.cn (Y. Liu)

‡ These authors contributed equally to this work.

1

Download English Version:

https://daneshyari.com/en/article/8014200

Download Persian Version:

https://daneshyari.com/article/8014200

<u>Daneshyari.com</u>