Accepted Manuscript

Template-free synthesis of mesoporous ZnCo₂O₄ nanosheets and quasi-cubes via a simple solvothermal route

Xingrong Han, Fan Liao, Yanfei Zhang, Huiyu Chen, Chunju Xu

PII: S0167-577X(18)30058-2

DOI: https://doi.org/10.1016/j.matlet.2018.01.051

Reference: MLBLUE 23699

To appear in: Materials Letters

Received Date: 24 November 2017 Revised Date: 3 January 2018 Accepted Date: 10 January 2018

Please cite this article as: X. Han, F. Liao, Y. Zhang, H. Chen, C. Xu, Template-free synthesis of mesoporous $ZnCo_2O_4$ nanosheets and quasi-cubes via a simple solvothermal route, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.01.051

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Template-free synthesis of mesoporous ZnCo₂O₄ nanosheets and quasi-cubes

via a simple solvothermal route

Xingrong Han, Fan Liao, Yanfei Zhang, Huiyu Chen*, Chunju Xu*

School of Materials Science and Engineering, North University of China, Taiyuan 030051, China

*Corresponding authors. Tel. /fax: +86-351-3557519.

E-mail: hychen09@sina.com (H. Chen), xuchunju@163.com (C. Xu).

Abstract: Porous ZnCo₂O₄ nanosheets (NSs) were synthesized via a solvothermal method in ethylene glycol

(EG) and water combined solvent, and followed by calcination in air at 400 °C for 2 h. No surfactant or

template was employed during the entire synthetic process. The ZnCo₂O₄ NSs have a thickness of about

100-150 nm, and possess a BET surface area and pore size of 54.4 m² g⁻¹ and 7.8 nm, respectively. Such porous

NSs would gradually stack into quasi-cube-like microstructures with reaction time prolonging. Quasi-cubes

with edge length ranging from 10 to 30 µm were produced, and NSs almost disappeared after 15 h of

solvothermal treatment. It was found that the volume ratio of EG to water played important role for the final

shapes of ZnCo₂O₄. Some irregular and broken NSs were formed if less amount of EG was used, while

quasi-microcubes stacked by NSs were dominant in the product as the ratio of EG to water increased to 4:1.

The current approach is simple and low cost, and can be extended for preparation of other transition metal

oxides in nanoscaled size and porous structure.

Keywords: Electronic materials; Semiconductors; Microstructures; ZnCo₂O₄.

1. Introduction

In recent years, nanoscaled transition metal oxides (NiO [1], ZnO [2], Co₃O₄ [3], and etc) have received

increasing attention because of their unique properties and potential applications [1, 4, 5]. However, the

industrialized application of Co₃O₄ is limited because cobalt is toxic and high-cost. Therefore, several studies

have been made to substitute one cobalt ion of Co₃O₄ with eco-friendly and low-cost alternative metals such as

Fe, Zn, Mn, and Cu, which can also enhance some of the physical and chemical properties of the cobalt oxide.

Spinel structural ZnCo₂O₄ can be widely used in gas sensors, electrocatalysis, supercapacitors owing to their

high electrochemical, rich redox reactions, low cost and environment-friendliness [6-8]. The bivalent Zn-ions

1

Download English Version:

https://daneshyari.com/en/article/8014215

Download Persian Version:

https://daneshyari.com/article/8014215

<u>Daneshyari.com</u>