ELSEVIER

Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/mlblue

Facile fabrication of magnetically separable Ag₃PO₄/CoFe₂O₄/GO composites with enhanced visible light photocatalytic performance

Daiyong Chao ^a, Yingbo Liu ^b, Zhongli Zhu ^{a,*}

- ^a Chemistry and Environmental Engineering College, Changchun University of Science and Technology, Changchun 130022, China
- b State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

ARTICLE INFO

Article history: Received 1 November 2017 Received in revised form 1 January 2018 Accepted 15 January 2018

Keywords: Semiconductors Magnetic materials Photocatalysts Ag₃PO₄

ABSTRACT

Novel magnetically separable Ag₃PO₄/CoFe₂O₄/graphene oxide (GO) composites with different mass ratios were prepared through a facile precipitation process. Photocatalytic activity of the as-prepared composites was evaluated by degrading methyl orange (MO) under visible light irradiation. The results indicated that Ag₃PO₄/CoFe₂O₄/GO exhibited higher degradation efficiency for MO compared with pure Ag₃PO₄. The enhanced photocatalytic performance of Ag₃PO₄/CoFe₂O₄/GO can be attributed to the effective separation of photoinduced electron-hole pairs. Radical-trapping experiments showed that holes and superoxide radicals were dominant radicals in the degradation process. According to the experimental results, a possible photocatalytic mechanism was also proposed. Furthermore, the Ag₃PO₄/CoFe₂O₄/GO composites can be easily separated from the reaction solution by an external magnet due to the existence of CoFe₂O₄.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

As a rising star in the world of visible-light-active photocatalysts, silver orthophosphate (Ag₃PO₄) has drawn much attention in recent years for the oxidation of water and photodecomposition of organic contaminants [1]. Unfortunately, Ag₃PO₄ suffers from the structural stability issues because Ag⁺ is easy to get photoin-duced electrons to be reduced to Ag⁰ in the absence of sacrificial reagent [2]. However, coupling Ag₃PO₄ with other semiconductors or carbon-based materials has been demonstrated a good strategy [3]. To date, some Ag₃PO₄-based hybrid photocatalysts, such as Ag₃PO₄/TiO₂/GO [4], Ag₃PO₄/g-C₃N₄/Znln₂S₄ [5] and Ag₃PO₄/carbon quantum dots [6] have been successfully prepared with enhanced photocatalytic activity. But these composites are generally used in powdery form, it is difficult to separate and recycle, seriously limiting their further practical application. Magnetic photocatalysts are alternatives for addressing this problem.

Cobalt ferrite (CoFe₂O₄), a visible light responsive semiconductor with a narrower band gap of approximately 1.2 eV and high electron transfer capability, has been widely applied in photocatalysis [7]. It is also noteworthy that CoFe₂O₄-based composites can be magnetically separable in the suspension because of the satis-

factory magnetic property of $CoFe_2O_4$ [8]. Recently, graphene oxide (GO) with large specific surface area, exceptional electrical conductivity and good solution-dispersibility, has been demonstrated to be an attractive support material in the field of photocatalysis [9,10]. Considering the excellent properties of $CoFe_2O_4$ and GO, we attempted to synthesize $Ag_3PO_4/CoFe_2O_4/GO$ composites for degrading MO. To the best of our knowledge, any report about the synthesis of ternary $Ag_3PO_4/CoFe_2O_4/GO$ composites has not been found.

In this study, ternary $Ag_3PO_4/CoFe_2O_4/GO$ photocatalysts were first synthesized through a simple chemistry precipitation approach. Photocatalytic performance and stability of the magnetic materials were evaluated over MO degradation under visible light irradiation. Finally, the capture experiments of reactive species and possible photodegradation mechanism were also studied.

2. Experimental

Preparation of $CoFe_2O_4$: $CoFe_2O_4$ was prepared by a hydrothermal method. 0.5948 g $CoCl_2 \cdot 6H_2O$ and 1.3515 g $FeCl_3 \cdot 6H_2O$ were dissolved in 30 mL deionized water. Further, the pH of the mixture was adjusted to 11 using 6 M NaOH solution. The reaction mixture was then transferred to a 50 mL Teflon-lined stainless steel autoclave for 12 h at 180 °C. The black precipitate was collected by a magnet, filtered and washed with deionized water and absolute ethanol, and then dried at 60 °C.

^{*} Corresponding author. E-mail address: zhuzhongli321@163.com (Z. Zhu).

Preparation of Ag₃PO₄/CoFe₂O₄/GO: GO was prepared according to a modified Hummers method [11]. For a typical preparation process, 13 mg GO was added to 50 mL deionized water and treated with ultrasound for 1 h, then 10 mL of AgNO₃ (311 mg) solution was added and sonicated for another 2 h. CoFe₂O₄ and Na₂HPO₄ mixture was obtained through a similar procedure. Subsequently, the Na₂HPO₄ solution containing CoFe₂O₄ was added dropwise to the AgNO₃ solution containing GO and stirred for 3 h. The obtained product was washed and dried. By adjusting the weight of CoFe₂O₄/GO (MG), a series of Ag₃PO₄/MG composites with different MG content were obtained. The weight ratio of MG to Ag₃PO₄ was 3%, 15%, 30% and 45%, which named as Ag₃PO₄/MG-35%, Ag₃PO₄/MG-15%, Ag₃PO₄/MG-30% and Ag₃PO₄/MG-45%, respectively. The weight ratio of CoFe₂O₄ to GO was 2:1.

3. Result and discussion

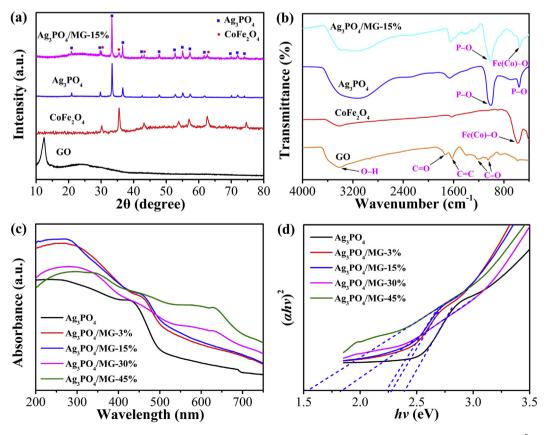

XRD patterns of as-prepared samples are shown in Fig. 1a. For the pattern of GO, there is a dominated diffraction peak at around 12° corresponding to the (002) reflection of GO [12]. From the spectra of CoFe₂O₄ and Ag₃PO₄, the indexed diffraction peaks can be assigned to CoFe₂O₄ (JCPDS no. 22-1086) and body-centered cubic structure of Ag₃PO₄ (JCPDS no. 06-0505), respectively. All of the diffraction peaks in Ag₃PO₄/MG-15 can be assigned to CoFe₂O₄ and Ag₃PO₄. The peak relative to GO was not observed because the regular layer-stacking of GO sheets was destroyed [13]. Similar intensity ratio (I_D/I_G) of GO (0.8547) and Ag₃PO₄/MG-15% (0.8536) can be observed, implying that the GO was not reduced during the composite synthesis process (Fig. S1a). This wide peak existed in ~24° should be the background of the glass (Fig. S1b).

Fig. 1b shows FTIR spectra of GO, CoFe₂O₄, Ag₃PO₄ and Ag₃PO₄/MG-15. In the GO spectrum, several characteristic peaks of GO can be seen [14]. For CoFe₂O₄ sample, the strong absorption peak at 579 cm⁻¹ is attributed to Fe(Co)–O bonds in CoFe₂O₄ [15]. In the case of Ag₃PO₄, two characteristic absorption peaks at 1010 cm⁻¹ and 561 cm⁻¹ are corresponding to the asymmetric stretching and bending vibration of PO₄³ groups, respectively [14]. In the spectrum of Ag₃PO₄/MG-15%, the absorption peaks of Fe(Co)–O bonds and the P–O stretching vibrations of PO₄³ are also observed.

The UV–vis diffuse reflectance spectra of Ag_3PO_4 and Ag_3PO_4/MG composites are shown in Fig. 1c. Pure Ag_3PO_4 shows an obvious absorption edge at about 530 nm, which conforms to the previously reported results [16]. Clearly, all the Ag_3PO_4/MG composites present enhanced absorption over the whole visible-light region compared with Ag_3PO_4 . The band gaps of Ag_3PO_4 , Ag_3PO_4/MG –3%, Ag_3PO_4/MG –15%, Ag_3PO_4/MG –30% and Ag_3PO_4/MG –45% were estimated to be 2.38 eV, 2.28 eV, 2.22 eV, 1.85 eV and 1.55 eV, respectively (Fig. 1d).

The SEM images of the as-prepared products are shown in Fig. 2. Pure Ag_3PO_4 possesses smooth surface with diameters of about 400 nm (Fig. 2a). It is noticeable that the Ag_3PO_4 are enwrapped by GO sheets and tiny $CoFe_2O_4$ are decorated on the surface of Ag_3PO_4 (Figs. 2b--d and S2). Furthermore, Ag_3PO_4/MG could be easily separated from aqueous dispersion by a magnet (Fig. 2c inset).

Fig. 3a shows the photocatalytic activity of different photocatalysts for MO under visible light irradiation. The degradation rate can be neglected in the absence of photocatalysts. All the Ag₃PO₄/MG photocatalysts showed higher photocatalytic activity than pure Ag₃PO₄. Among the ternary composites, Ag₃PO₄/MG-15% exhibited the highest photocatalytic activity.

Fig. 1. (a) XRD patterns, (b) FTIR spectra of the as-prepared samples, (c) UV-vis diffuse reflectance spectra of different samples, (d) Plots of $(ahv)^2$ versus energy (hv) for different samples.

Download English Version:

https://daneshyari.com/en/article/8014358

Download Persian Version:

https://daneshyari.com/article/8014358

Daneshyari.com