Accepted Manuscript

Effect of the nitrogen-argon gas mixtures on the superconductivity properties of reactively sputtered molybdenum nitride thin films

N. Haberkorn, S. Bengio, S. Suárez, P.D. Pérez, M. Sirena, J. Guimpel

PII:	S0167-577X(17)31804-9
DOI:	https://doi.org/10.1016/j.matlet.2017.12.045
Reference:	MLBLUE 23543
To appear in:	Materials Letters
Received Date:	7 June 2017
Revised Date:	9 November 2017
Accepted Date:	10 December 2017

Please cite this article as: N. Haberkorn, S. Bengio, S. Suárez, P.D. Pérez, M. Sirena, J. Guimpel, Effect of the nitrogen-argon gas mixtures on the superconductivity properties of reactively sputtered molybdenum nitride thin films, *Materials Letters* (2017), doi: https://doi.org/10.1016/j.matlet.2017.12.045

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of the nitrogen-argon gas mixtures on the superconductivity properties of reactively sputtered molybdenum nitride thin films

N. Haberkorn,^{1,2} S. Bengio,¹ S. Suárez,^{1,2} P. D. Pérez,¹ M. Sirena,^{1,2} J. Guimpel.^{1,2}

¹Comisión Nacional de Energía Atómica and Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 San Carlos de Bariloche, Argentina.

² Instituto Balseiro, Universidad Nacional de Cuyo and Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 San Carlos de Bariloche, Argentina.

Abstract

We report on the superconducting properties of nanocrystalline molybdenum nitride thin films grown by reactive DC sputtering at room temperature with a N₂:Ar mixture. Thin films grown using 5 % N₂ concentration display $T_c = 8$ K, which is gradually reduced to 5.8 K for 30 % N₂ concentration, producing changes in nitrogen stoichiometry of the samples from Mo₂N to Mo₂N_{1+x} ($0 \le x < 0.4$). The T_c is abruptly reduced and disappears for N₂ concentration between 30 % and 40 %, which can be attributed to an increment in the disorder due to phase coexistence between cubic γ -Mo₂N and non-superconducting amorphous MoN (dominant for N₂ concentration > 40 %).

e-mail: nhaberk@cab.cnea.gov.ar; Tel:+540294 4445147-FAX:+540294 4445299

Keywords: nitrides; sputtering; superconductivity.

1. Introduction

Transition-metal nitrides (TMN) display a wide range of electronic and mechanical properties which are promising for technological applications. Superconducting TMN are potential candidates in a wide range of cryogenic devices like tunnel junctions [1] and electromagnetic radiation detectors [2]. The Mo nitrides present several superconducting crystalline phases: γ -Mo₂N (cubic) with $T_c \sim 5$ K [3], β -Mo₂N (tetragonal) with $T_c \sim 5$ K [4] and δ -MoN (hexagonal) with $T_c \sim 12$ K [5]. Different methods have been used in the growth of Mo nitride thin films, such as reactive sputtering [6,7], pulsed laser deposition [8], thermal nitration [9] and chemical routes [10]. A distinctive feature of γ -Mo₂N thin films is the influence of the disorder on T_c , which ranges from 4.5 K to around 8 K for epitaxial and polycrystalline thin films, respectively [11,12].

In this letter, we show that the T_c in γ -Mo₂N_x thin films (grown by reactive DC sputtering at room temperature) can be tuned by modifying the N₂:Ar mixture used during the sputtering process. T_c in thin films can be modified from 8 K to temperatures below 3 K by increasing the N₂ partial pressure in the N₂:Ar mixture from 5% to 40% of the total pressure. This modification can be associated with changes in the

Download English Version:

https://daneshyari.com/en/article/8014731

Download Persian Version:

https://daneshyari.com/article/8014731

Daneshyari.com