Materials Letters 215 (2018) 259-262

Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/mlblue

Chemical vapor deposition growth of scalable monolayer polycrystalline graphene films with millimeter-sized domains

^a Institute of Applied Mechanics, Zhejiang University, Hangzhou, Zhejiang 310027, China

^b Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China

^c Department of Physics, Zhejiang University, Hangzhou 310012, Zhejiang, PR China

^d Institute of Microelectronics, Chinese Academy of Science, Beijing 100029, PR China

ARTICLE INFO

Article history: Received 14 December 2017 Received in revised form 20 December 2017 Accepted 25 December 2017 Available online 26 December 2017

Keywords: Chemical vapor deposition Polycrystalline graphene Millimeter-sized domain Surface oxygen

1. Introduction

Graphene has been attracting broad research interests because of its many excellent properties [1]. Chemical vapor deposition (CVD) method on Cu foils is considered as the most promising method for graphene synthesis [2], but its yield tends to be polycrystalline because of the domain nucleation with different inplane orientations [3]. A hot topic for CVD synthesis of graphene is to produce large-scale single crystals, but it always requires either a time-consuming single-seed graphene growth [4,5] or a costly single-crystal Cu (111) surface [6,7]. Therefore, a scalable and economic way to synthesize polycrystalline graphene with relatively large domains is by far a best choice for graphene industry. The major challenge is to nucleate graphene domains with a suitable density so that their growth rates and coalescence probability are matched. Up to now the largest domain size reported for continuous polycrystalline graphene is still <1 mm [8], mainly due to that the nucleation density of graphene domains cannot be considerably reduced in a traditional CVD process.

Here we present a synthesis method of high-quality continuous monolayer graphene films with millimeter-sized domains on ordi-

* Corresponding authors. E-mail addresses: peizhao@zju.edu.cn (P. Zhao), htw@zju.edu.cn (H. Wang).

ABSTRACT

The preparation of scalable graphene films has attracted an enormous attention due to its industrial importance for graphene applications. Here we present a synthesis method of high-quality continuous monolayer graphene films with millimeter-sized domains on ordinary Cu substrates using oxygen-assisted chemical vapor deposition. This method demonstrates a significantly improvement to the resultant graphene such as a largely decreased nucleation density from ~10⁶ to ~10¹ nuclei/cm², an increased average domain size from ~0.004 to ~1.5 mm and a film coverage from 64% to 100%. We attributed the success of this growth to the surface layer formed by bonded oxygen in Cu, which provides a higher priority for catalyzing the nucleation and growth of graphene domains.

© 2017 Published by Elsevier B.V.

nary Cu substrate by low pressure (LP-) oxygen-assisted CVD process. This method demonstrates a significantly improvement to the resultant graphene such as a largely decreased nucleation density from $\sim 10^6$ to $\sim 10^1$ nuclei/cm², an increased average domain size from ~ 0.004 to ~ 1.5 mm and a film coverage from 64% to 100%. We attributed the success of this growth to the surface layer formed by bonded oxygen in Cu, which provides a higher priority for catalyzing the nucleation and growth of graphene domains.

2. Experimental

All the graphene films were synthesized in a quartz tube furnace (Thermo Scientific) on Cu foils (25 µm thick, 99.8% purity, Alfa Aesar). The tube was pumped to the base pressure <0.5 Pa and heated to 1060 °C under 300 sccm H₂. 1 sccm O₂ was introduced for 10 min prior to the growth by 300 sccm H₂ and 0.3 sccm CH₄. The pressure was kept at 350 Pa during the growth (Fig. S1). The as-grown graphene was heated in air for 5 min at 180 °C for direct optical visualization [9]. The characterizations were performed by scanning electron microscopy (SEM, S-3700 from Hitachi Co., Ltd.), transmission electron microscopy (LabRAM HR Evolution, Horiba Co., Ltd.), and Hall effect measurement system (Hall 8800 from SWIN Co., Ltd.).

3. Results and discussion

Fig. 1a shows the optical photograph of a scalable graphene film on Cu. After direct optical visualization [9], no color contrast was observed, suggesting a complete graphene coverage of the Cu surface. With shorter growth time, graphene partially covers the Cu surface (\sim 75.0%), in which most of the domains have achieved a considerable large domain size of >1 mm. The maximum domain size is approximately 2.8 mm, corresponding to an average growth rate of ~16 μ m/min. Fig. 1c shows the OM image of a graphene film transferred on SiO₂ (300 nm)/Si substrate. The whole sample exhibits a light-violet color, indicating the high layer continuity and uniformity. Fig. 1d shows the selected-area-electron-diffraction (SAED) pattern of a graphene domain. The sharp diffraction from a set of six spots with a hexagonal symmetry can be observed, and the intensity profile along the yellow line reveals the characteristics of monolayer graphene. Fig. 1e shows the typical Raman spectrum of a graphene film, which only exhibits peaks at

Fig. 1. (a) The optical photograph of a continuous graphene film on Cu. (b) The OM image of a graphene domain on Cu. (c) The OM image of a graphene film transferred on SiO₂/Si substrate. (d) The SAED pattern and intensity profile and (e) typical Raman spectrum of a graphene domain. (f-h) Scanning Raman maps of a continuous graphene film for I_{2D}/I_G , FWHM of the 2D-band, and I_D/I_G .

Fig. 2. (a and b) OM images of graphene on Cu with and without surface oxygen, respectively. Scale bars in (a) and (b) are 5 mm and 20 µm, respectively. (c-e) Size, nucleation density and film coverage of graphene grown with and without surface oxygen.

Download English Version:

https://daneshyari.com/en/article/8014911

Download Persian Version:

https://daneshyari.com/article/8014911

Daneshyari.com