Accepted Manuscript

Effect of Pr inoculation and crystal size on the Hall-Petch relationship for Al-30wt%Mg₂Si composites

Tongyu Liu, Yingmin Li, Yuyan Ren

PII: S0167-577X(17)31730-5

DOI: https://doi.org/10.1016/j.matlet.2017.11.105

Reference: MLBLUE 23471

To appear in: Materials Letters

Received Date: 17 November 2017 Accepted Date: 22 November 2017

Please cite this article as: T. Liu, Y. Li, Y. Ren, Effect of Pr inoculation and crystal size on the Hall-Petch relationship for Al-30wt%Mg₂Si composites, *Materials Letters* (2017), doi: https://doi.org/10.1016/j.matlet.2017.11.105

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of Pr inoculation and crystal size on the Hall-Petch relationship for Al-30wt%Mg₂Si composites

Tongyu Liu, Yingmin Li, Yuyan Ren

School of Material Science and Engineering, Shenyang University of Technology, 110870 Shenyang, PR China

Abstract: The effect of varying levels of Pr inoculation on the microstructure, granularity, and mechanical properties of an Al-30%Mg₂Si composite was studied. When the Pr content was increased to 0.8wt%, the refinement was ideal. Similarly, the mechanical properties such as Ultimate Tensile Stress (UTS), Breaking Elongation (BE), and Vickers Microhardness (VM) values were improved. The relationship between crystal size and UTS or VM was described using the Hall-Petch relationship.

Key words: composite materials; X-ray techniques; Pr inoculation; nanosize; Hall-Petch

1. Introduction

Particulate reinforced aluminium metal matrix composites (MMCs) have attracted great attention recently because of their low density, high wear resistance, low thermal-expansion, and much lower costs of production [1-3]. Al–Mg₂Si composites have potential application for use in automobile brake discs because intermetallic Mg₂Si exhibits a high-melting point, low density, high hardness, low thermal expansion coefficient and high elastic modulus [4]. However, Mg₂Si is very brittle which complicates its processing and limits its further application, especially at low temperatures [5]. Moreover, the primary Mg₂Si particles exhibit coarse morphology and brittleness in the composites, which has a detrimental effect on the overall mechanical properties [6,7]. Thus, the primary Mg₂Si particles in aluminium MMCs must be modified to change their morphology and distribution to improve the overall mechanical properties.

The equilibrium diagram of Al-Mg₂Si is pseudo-eutectic ^[8,9], and the pseudo-binary phase diagram of Al-Mg₂Si was confirmed by Li et al. and Zhang et al. ^[10,11]. Since then, different Mg₂Si contents in Al-Mg₂Si composites were studied in range of $0wt\%Mg_2Si$ to $25wt\%Mg_2Si$. However, higher concentrations of Mg₂Si in aluminium MMCs have rarely been reported, as the Al-30wt $\%Mg_2Si$ composite features primary Mg₂Si particles that dominate the microstructural and mechanical properties. Thus, investigations into the modification of the Al-Mg₂Si composites are needed. Rare earth (RE) metals, such as Y ^[12], Ce ^[13], Nd ^[14], and La ^[15] can effectively refine the microstructure and enhance the strength and ductility of Al–Mg₂Si. However, the effect of Pr on the crystal size of the Mg₂Si phase and the relationship between the crystal size and mechanical properties have not been explored.

In this study, excess Mg₂Si-reinforced aluminium MMCs, i.e. the Al–30wt% Mg₂Si composites, were investigated. Pr was used to modify the Mg₂Si particles to investigate the effect of Pr on microstructure, granularity, and mechanical properties of Al–30wt% Mg₂Si prepared by an *in-situ* process. Furthermore, the relationship between the crystal size of Mg₂Si and the mechanical properties is investigated.

2. Experimental procedures

The Al–30wt%Mg₂Si composite was synthesized with aluminium (ingot, 99.70% purity), magnesium (ingot, 99.61% purity), and silicon (block, 99.22% purity) by an *in-situ* process. Pr inoculation was performed by direct addition to the melts, wherein the Pr mass fraction ranged from 0.2wt% to 0.8wt% in steps of 0.2wt%. Melts with and without Pr were cast into a permanent steel mould, and a composite ingot was obtained. Further details of the production process can be found elsewhere [15].

Metallographic specimens were sectioned from the same positions. The surface morphology and distribution of the composite were observed by SEM. Phase composition and crystal size were determined using XRD. Ultimate tensile

Download English Version:

https://daneshyari.com/en/article/8014960

Download Persian Version:

https://daneshyari.com/article/8014960

<u>Daneshyari.com</u>