ELSEVIER

Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/mlblue

Microwave dielectric properties of the novel low temperature fired $Ni_{0.5}Ti_{0.5}NbO_4$ + xwt%BiVO₄ (2.5 \leq x \leq 10) ceramics

Xin Huang*, Huaiwu Zhang*, Yuanming Lai, Gang Wang, Jie Li

State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China

ARTICLE INFO

Article history: Received 1 November 2017 Accepted 6 December 2017 Available online 7 December 2017

Keywords: Electronic materials Ni_{0.5}Ti_{0.5}NbO₄ BiVO₄ Lower sintering temperature

ABSTRACT

The low temperature fired Ni_{0.5}Ti_{0.5}NbO₄ + xwt%BiVO₄ (2.5 \leq x \leq 10) ceramics were prepared through the solid state synthesis methods, effects of various contents of BiVO₄ on different phases, microstructures and microwave dielectric properties for Ni_{0.5}Ti_{0.5}NbO₄ were researched systematically. The sintering temperatures of Ni_{0.5}Ti_{0.5}NbO₄ ceramics can be effectively decreased from 1100 °C to 900 °C by adding 10 wt% BiVO₄ ceramics, and the sintering relative density over 96% could be prepared at 900 °C, meanwhile the temperature coefficient of the resonant frequency were decreased as the BiVO₄ additions increased. Typically, preferred dielectric properties of Ni_{0.5}Ti_{0.5}NbO₄ + 10 wt%BiVO₄ composites with ε_r = 56.7, $Q \times f$ = 7062 GHz, τ_f = +55.59 ppm/°C were obtained when they were sintered at 900 °C.

1. Introduction

Nowadays, microwave dielectric materials show the significance in designing the microwave device, such as resonators, antennas and filters [1–4]. The requirements for dielectric materials application in communication systems are as follows: low dielectric loss ($Q \times f$ values > 5000), great dielectric constant ($\varepsilon_r > 10$) and a near-zero temperature of the resonant frequency [5].

Niobate dielectric materials have attracted so many attentions of researchers as their excellent properties; meanwhile, a serial of niobate materials could generate a wide permittivity ranges, and also high $Q\times f$ values are obtained at the same time. The highly dielectric constant is benefit to device miniaturization, and Ni_{0.5}Ti_{0.5}NbO₄ [6] ceramics possess relatively higher dielectric constant among the $A^{2+}Nb_2O_6$ and $A^{2+}TiNb_2O_8$ compounds. Finally it shows the dielectric properties: ϵ_r = 56.8, $Q\times f$ = 21,100 GHz, τ_f = +79.1 ppm/°C when sintered at 1100 °C, thus, it could be a good candidate to fabricate resonators, and it is the major phase of the composite in this work.

Low temperature co-fired ceramic technology is an effective method to fabricate the microwave device. Which need the sintering temperature of ceramic must be lower than 950 °C. BiVO₄ used as sintering aids to lower the sintering temperature of other ceramics have been studied by many researchers [7]. Wee [8] have studied the low-fired ZnNb₂O₆ ceramics with BiVO₄ addition, and

E-mail addresses: 201511030133@std.uestc.edu.cn (X. Huang), hwzhang@uestc.edu.cn (H. Zhang).

ZnNb $_2$ O $_6$ ceramics present excellent microwave dielectric properties of ϵ_r = 26, Q × f = 55,000 GHz, τ_f = -57 ppm/°C with 5% BiVO $_4$ addition, and the sintering temperature decrease form 1200 °C to 950 °C. In view of this point, novel low temperature fired Ni $_{0.5}$ Ti $_{0.5}$ -NbO $_4$ + xwt%BiVO $_4$ (2.5 \leq x \leq 10) ceramics were prepared in this work.

2. Material and methods

Ni_{0.5}Ti_{0.5}NbO₄ and BiVO₄ ceramic powders were prepared independently using the solid-state reaction method with the precursors: NiO (98%), Bi₂O₃ (99%), TiO₂ (99.9%), Nb₂O₅ (99.5%) V₂O₅ (99%). Raw materials were mixed in a ball mill with ZrO2 balls for 10 h using water as the liquid medium. Thereafter the Ni_{0.5}Ti_{0.5}-NbO₄ powders were pre-sintered at 1040 °C for 10 h and BiVO₄ powders were pre-sintered at 550 °C for 3 h. The two kinds of powers were then mixed as the ratio of Ni_{0.5}Ti_{0.5}NbO₄ + xwt%BiVO₄ (2. 5 < x < 10). Then the powders were re-milled for further 10 h to obtain fine powders, and were pressed into pellet disks with 5% PVA. Then, the disks were sintered at 860-920 °C for 6 h, and furnace-cooled to room temperature. The phase formation was examined by an X-ray diffract-meter (XRD, DX-2700, Haoyuan co.) with Cu $K\alpha$ radiation. The microstructures and EDX were measured by a scanning electron microscope (JSM-6490, JEOL, Japan). The microstructure and elemental analysis of the sintered specimens were examined from polished surfaces by a scanning electron microscopy (SEM, JSM-6490LV, Japan). The bulk density was measured by the Archimedes method. The ε_r values and $Q \times f$ values were determined by the Hakki-Coleman dielectric resonator

^{*} Corresponding authors.

method using an HP83752A network analyzer. The τ_f value was measured by using the equation:where f_{25} and f_{85} are the resonant frequencies at 25 °C and 85 °C respectively.

3. Results and discussion

The XRD patterns of the $Ni_{0.5}Ti_{0.5}NbO_4+xwt\%BiVO_4$ composites are shown in Fig. 1. As we can see that the $BiVO_4$ added to $Ni_{0.5}Ti_{0.5}NbO_4$ ceramics sintered at low temperatures contained three phases: $Ni_{0.5}Ti_{0.5}NbO_4$ (JCPDS #52-1875), $BiVO_4$ (JCPDS #75-2481) and a small amount of $NiNb_2O_6$ (JCPDS #15-0159) phase. Obviously, the intensity of diffraction peaks of $BiVO_4$ phase was strengthened gradually with the increasing $BiVO_4$ phase addition. The right pattern of the Fig. 1 shows the (1 1 0) plane diffraction peaks of $Ni_{0.5}Ti_{0.5}NbO_4$ phase which was shifted to lower angle, this phenomenon maybe ascribed to Bi^{3+} ion whose radius is 105 Å which is bigger than all the positive ions of $Ni_{0.5}Ti_{0.5}NbO_4$ phase [9].

Fig. 1. XRD patterns of the $\rm Ni_{0.5} Ti_{0.5} NbO_4 + xwt\% BiVO_4$ composites with different x value changes sintered at 900 °C.

Fig. 2 illustrates SEM micrographs of Ni_{0.5}Ti_{0.5}NbO₄ + xwt% BiVO₄ composites sintered at 900 °C. The results indicated that grain size of Ni_{0.5}Ti_{0.5}NbO₄ + xwt%BiVO₄ composites were enlarged as the BiVO₄ proportion increased, meanwhile, fewer porous and highly dense microstructures could be obtained with the BiVO₄ additions. For further study of the influence on sintering properties, we measured the relative density of Ni_{0.5}Ti_{0.5}NbO₄+xwt% BiVO₄ which are shown in Fig. 3(a), the relative density was notably increased as BiVO₄ proportion increased, and the relative density was higher than 96% when the addition of BiVO₄ was beyond 7.5 wt%, particularly, the samples with 10 wt% BiVO₄ possess a relative density of 96.9%. So that, the addition of BiVO₄ can effective decrease the sintering temperatures of Ni_{0.5}Ti_{0.5}NbO₄ ceramics.

Microwave dielectric constants of $Ni_{0.5}Ti_{0.5}NbO_4$ with $BiVO_4$ addition are shown in Fig. 3(b), the dielectric constant increased as the $BiVO_4$ proportion increased. This phenomenon may be caused by two factors, one is that more $BiVO_4$ additions have improved the sintering process, and formed high density ceramics, which will influence the dielectric constant [10], the other one is that dielectric constant of $BiVO_4$ ceramic is 68 is higher than $Ni_{0.5}Ti_{0.5}NbO_4$ ceramic, so that the $BiVO_4$ added to $Ni_{0.5}Ti_{0.5}NbO_4$ would increase the dielectric constant and $Ni_{0.5}Ti_{0.5}NbO_4$ + 10 wt%BiVO $_4$ composites sintered at 900 °C obtained a dielectric constants of 56.7.

The room temperature $Q \times f$ values of $\mathrm{Ni}_{0.5}\mathrm{Ti}_{0.5}\mathrm{NbO}_4 + \mathrm{xwt}\%$ BiVO₄ composites sintered at different temperatures are presented in Fig. 3(c). As we can see, $Q \times f$ values of all the samples sintered at low temperatures were smaller than pure $\mathrm{Ni}_{0.5}\mathrm{Ti}_{0.5}\mathrm{NbO}_4$ ceramic sintered at $1100\,^\circ\mathrm{C}$, this phenomenon may be attributed to the addition of BiVO₄ since BiVO₄ ceramics have a lower $Q \times f$ values. Generally speaking, the $Q \times f$ values are decided by intrinsic factors and extrinsic factors, the extrinsic factors contain: packing fraction, the second phase and porosity [11]. As is analyzed in Fig. 2 and Fig. 3(a), relative densities of the composites changed a lot with BiVO₄ addition at low sintering temperature, therefore, the BiVO₄ addition would influence the $Q \times f$ values, and the $Q \times f$ values increased as the BiVO₄ proportion increased, this tendency was coincided with the tendency of relative densities. the samples with

Fig. 2. SEM micrographs of the fracture morphologies of the Ni_{0.5}Ti_{0.5}NbO₄ + xwt%BiVO₄ composites with different x value changes sintered at 900 °C.

Download English Version:

https://daneshyari.com/en/article/8015143

Download Persian Version:

https://daneshyari.com/article/8015143

<u>Daneshyari.com</u>