Microwave dielectric properties of the novel low temperature fired Ni$_{0.5}$Ti$_{0.5}$NbO$_4$ + xwt%BiVO$_4$ (2.5 ≤ x ≤ 10) ceramics

Xin Huang *, Huaiwu Zhang *, Yuanming Lai, Gang Wang, Jie Li

State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

The low temperature fired Ni$_{0.5}$Ti$_{0.5}$NbO$_4$ + xwt%BiVO$_4$ (2.5 ≤ x ≤ 10) ceramics were prepared through the solid state synthesis methods, effects of various contents of BiVO$_4$ on different phases, microstructures and microwave dielectric properties for Ni$_{0.5}$Ti$_{0.5}$NbO$_4$ were researched systematically. The sintering temperatures of Ni$_{0.5}$Ti$_{0.5}$NbO$_4$ ceramics can be effectively decreased from 1100°C to 900°C by adding 10 wt% BiVO$_4$ ceramics, and the sintering relative density over 96% could be prepared at 900°C, meanwhile the temperature coefficient of the resonant frequency were decreased as the BiVO$_4$ additions increased. Typically, preferred dielectric properties of Ni$_{0.5}$Ti$_{0.5}$NbO$_4$ + 10 wt%BiVO$_4$ composites with $e_r = 56.7$, $Q_f = 7062$ GHz, $\tau_f = +55.59$ ppm/C were obtained when they were sintered at 900°C.

1. Introduction

Nowadays, microwave dielectric materials show the significance in designing the microwave device, such as resonators, antennas and filters [1–4]. The requirements for dielectric materials application in communication systems are as follows: low dielectric loss (Q_f values > 5000), great dielectric constant ($e_r > 10$) and a near-zero temperature of the resonant frequency [5].

Niobate dielectric materials have attracted so many attentions of researchers as their excellent properties; meanwhile, a serial of niobate materials could generate a wide permittivity ranges, and also high Q_f values are obtained at the same time. The highly dielectric constant is benefit to device miniaturization, and Ni$_{0.5}$Ti$_{0.5}$NbO$_4$ [6] ceramics possess relatively higher dielectric constant among the A$_2$+Nb$_2$O$_6$ and A$_2$+TiNb$_2$O$_8$ compounds. Finally it shows the dielectric properties: $e_r = 56.8$, $Q_f = 21,100$ GHz, $\tau_f = +79.1$ ppm/C when sintered at 1100°C, thus, it could be a good candidate to fabricate resonators, and it is the major phase of the composite in this work.

Low temperature co-fired ceramic technology is an effective method to fabricate the microwave device. Which need the sintering temperature of ceramic must be lower than 950°C. BiVO$_4$ used as sintering aids to lower the sintering temperature of other ceramics have been studied by many researchers [7]. Wee [8] have studied the low-fired ZnNb$_2$O$_6$ ceramics with BiVO$_4$ addition, and ZnNb$_2$O$_6$ ceramics present excellent microwave dielectric properties of $e_r = 26$, $Q_f = 55,000$ GHz, $\tau_f = -57$ ppm/C with 5% BiVO$_4$ addition, and the sintering temperature decrease form 1200°C to 950°C. In view of this point, novel low temperature fired Ni$_{0.5}$Ti$_{0.5}$-NbO$_4$ + xwt%BiVO$_4$ (2.5 ≤ x ≤ 10) ceramics were prepared in this work.

2. Material and methods

Ni$_{0.5}$Ti$_{0.5}$NbO$_4$ and BiVO$_4$ ceramic powders were prepared independently using the solid-state reaction method with the precursors: NiO (98%), Bi$_2$O$_3$ (99%), TiO$_2$ (99.9%), Nb$_2$O$_5$ (99.5%) V$_2$O$_5$ (99%). Raw materials were mixed in a ball mill with ZrO$_2$ balls for 10 h using water as the liquid medium. Thereafter the Ni$_{0.5}$Ti$_{0.5}$-NbO$_4$ powders were pre-sintered at 1040°C for 10 h and BiVO$_4$ powders were pre-sintered at 550°C for 3 h. The two kinds of powders were then mixed as the ratio of Ni$_{0.5}$Ti$_{0.5}$NbO$_4$ + xwt%BiVO$_4$ (2.5 ≤ x ≤ 10). Then the powders were re-milled for further 10 h to obtain fine powders, and were pressed into pellet disks with 5% PVA. Then, the disks were sintered at 860–920°C for 6 h, and furnace-cooled to room temperature. The phase formation was examined by an X-ray diffract-meter (XRD, DX-2700, Haoyuan co.) with Cu K$_\alpha$ radiation. The microstructures and EDX were measured by a scanning electron microscope (JSM-6490, JEOL, Japan). The microstructure and elemental analysis of the sintered specimens were examined from polished surfaces by a scanning electron microscopy (SEM, JSM-6490LV, Japan). The bulk density was measured by the Archimedes method. The e_r values and Q_f values were determined by the Hakki-Coleman dielectric resonator

*Corresponding authors.

E-mail addresses: 201511030133@std.uestc.edu.cn (X. Huang), hwzhang@uestc.edu.cn (H. Zhang).
method using an HP83752A network analyzer. The \(f_1 \) value was measured by using the equation: where \(f_{25} \) and \(f_{85} \) are the resonant frequencies at 25 °C and 85 °C respectively.

3. Results and discussion

The XRD patterns of the Ni\(_{0.5}\)Ti\(_{0.5}\)NbO\(_4\)+xwt%BiVO\(_4\) composites are shown in Fig. 1. As we can see that the BiVO\(_4\) added to Ni\(_{0.5}\)Ti\(_{0.5}\)NbO\(_4\) ceramics sintered at low temperatures contained three phases: Ni\(_{0.5}\)Ti\(_{0.5}\)NbO\(_4\) (JCPDS #52-1875), BiVO\(_4\) (JCPDS #75-2481) and a small amount of NiNb\(_2\)O\(_6\) (JCPDS #15-0159) phase. Obviously, the intensity of diffraction peaks of BiVO\(_4\) phase was strengthened gradually with the increasing BiVO\(_4\) phase addition. The right pattern of the Fig. 1 shows the (1 1 0) plane diffraction peaks of Ni\(_{0.5}\)Ti\(_{0.5}\)NbO\(_4\) phase which was shifted to lower angle, this phenomenon maybe ascribed to Bi\(^{3+}\) ion whose radius is 105 Å which is bigger than all the positive ions of Ni\(_{0.5}\)Ti\(_{0.5}\)NbO\(_4\) phase [9].

Fig. 2 illustrates SEM micrographs of Ni\(_{0.5}\)Ti\(_{0.5}\)NbO\(_4\)+xwt%BiVO\(_4\) composites sintered at 900 °C. The results indicated that grain size of Ni\(_{0.5}\)Ti\(_{0.5}\)NbO\(_4\)+xwt%BiVO\(_4\) composites were enlarged as the BiVO\(_4\) proportion increased, meanwhile, fewer porous and highly dense microstructures could be obtained with the BiVO\(_4\) additions. For further study of the influence on sintering properties, we measured the relative density of Ni\(_{0.5}\)Ti\(_{0.5}\)NbO\(_4\)+xwt%BiVO\(_4\) which are shown in Fig. 3(a), the relative density was notably increased as BiVO\(_4\) proportion increased, and the relative density was higher than 96% when the addition of BiVO\(_4\) was beyond 7.5 wt%, particularly, the samples with 10 wt% BiVO\(_4\) possess a relative density of 96.9%. So that, the addition of BiVO\(_4\) can effective decrease the sintering temperatures of Ni\(_{0.5}\)Ti\(_{0.5}\)NbO\(_4\) ceramics.

Microwave dielectric constants of Ni\(_{0.5}\)Ti\(_{0.5}\)NbO\(_4\) with BiVO\(_4\) addition are shown in Fig. 3(b), the dielectric constant increased as the BiVO\(_4\) proportion increased. This phenomenon may be caused by two factors, one is that more BiVO\(_4\) additions have improved the sintering process, and formed high density ceramics, which will influence the dielectric constant [10], the other one is that dielectric constant of BiVO\(_4\) ceramic is 68 is higher than Ni\(_{0.5}\)Ti\(_{0.5}\)NbO\(_4\) ceramic, so that the BiVO\(_4\) added to Ni\(_{0.5}\)Ti\(_{0.5}\)NbO\(_4\) would increase the dielectric constant and Ni\(_{0.5}\)Ti\(_{0.5}\)NbO\(_4\)+10 wt%BiVO\(_4\) composites sintered at 900 °C obtained a dielectric constants of 56.7.

The room temperature \(Q \times f \) values of Ni\(_{0.5}\)Ti\(_{0.5}\)NbO\(_4\)+xwt%BiVO\(_4\) composites sintered at different temperatures are presented in Fig. 3(c). As we can see, \(Q \times f \) values of all the samples sintered at low temperatures were smaller than pure Ni\(_{0.5}\)Ti\(_{0.5}\)NbO\(_4\) ceramic sintered at 1100 °C, this phenomenon may be attributed to the addition of BiVO\(_4\) since BiVO\(_4\) ceramics have a lower \(Q \times f \) values. Generally speaking, the \(Q \times f \) values are decided by intrinsic factors and extrinsic factors, the extrinsic factors contain: packing fraction, the second phase and porosity [11]. As is analyzed in Fig. 2 and Fig. 3(a), relative densities of the composites changed a lot with BiVO\(_4\) addition at low sintering temperature, therefore, the BiVO\(_4\) addition would influence the \(Q \times f \) values, and \(Q \times f \) values increased as the BiVO\(_4\) proportion increased, this tendency was coincided with the tendency of relative densities. The samples with