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a  b  s  t  r  a  c  t

Based  on  the  first-order  gradient  damage  theory  where  a  damage  gradient  D,m and  internal  characteristic
length  parameter  lm were  introduced  into  the  constitutive  equations,  an  approach  is proposed  to  consider
the  influence  of  damage  gradients  on  the size  effect  of  concrete  beams.  In  the  numerical  implementation
of  the  first-order  gradient  damage  theory,  damage  values  at Gauss  points  are  calculated  in each  iterative
step  of non-linear  finite  element  analysis,  then  the  damage  gradients  of  Gauss  points  are  calculated  by
using  the finite  difference  method.  Geometrically  similar  unnotched  pure  bending  concrete  beams  with
a fixed  ratio  4 of length  to depth  are  simulated.  The  results  show  that  the  nominal  flexural  strength  Mnom

increases  linearly  with  the  internal  characteristic  length  parameter  lm and  decreases  monotonically  with
the beam  depth  d. When  lm equals  to zero,  the  nominal  flexural  strength  Mnom becomes  a  constant.
Otherwise,  the  size  effect  markedly  increases  with  the  internal  characteristic  length  parameter  lm. A
gradient  damage  size  effect  law (GDSEL)  is  proposed  to predict  the  size  effect  of  unnotched  concrete
beams.  When  the  beam  depth  d →  ∞, the  GDSEL  produces  a horizontal  asymptote  in the  plot  of  Mnom

versus  d.
© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The size effect is a well known phenomenon in materials, such as
metal [15], concrete [3,28], rock [13,28] and bone [9,10]. There are a
number of experimental and theoretical studies [3,6,7,19,20,24,28]
that confirm the existence of the size effect in concrete. Since large
structures are often beyond the range of testing in laboratories,
their design has to rely on a realistic extrapolation of testing results
with smaller sizes. Civil engineers must extrapolate experimental
outcomes at laboratory scale to the results which can be used in
large scale situations. So, the physical understanding of size effects
is of major importance.

Some researchers developed theories trying to ‘predict’ the size
effect for scale ranges which cannot be tested in laboratory. There
are two aspects of size effect: (1) Statistical and (2) Deterministic.
The first statistical theory was introduced by Weibulll [24] (also
called the weakest link theory) which postulates that a structure is
as strong as its weakest component. The Weibull’s size effect model
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is a power law for large structures that fails as soon as a macro-
scopic fracture initiates in one small material element. Since the
stress redistribution is not considered, the structure fails when its
strength is exceeded at the weakest spot. Therefore, it is unable to
account for a spatial correlation between local material properties,
and it does not include any characteristic length of micro-structures
so that the deterministic size effect is ignored. Currently, there
are two  different deterministic theories of size effect, for concrete:
the multi-fractal scaling law (MFSL) [1–3,12] and the Bažant’s size
effect law [26,27]. The fundamental assumption in the multi-fractal
damage theory is that the material has perfect homogeneity when
structure size d → 0. The corresponding size effect law is of the
form:

�N(d) =
(

Am + Bm

d

)1/2
(1)

where �N is nominal strength, d is the external size of the structure,
Am and Bm are two constants obtained by fitting test or calculated
data. In the fractal approach, �N decreases in a hyperbolic form with
increasing d. The MFSL behaviour in the bilogarithmic plane ln �N

versus ln d is non-linear and shows two  asymptotes with slope −1/2
for small structures (lim

d→0
�N = +∞) and slope zero for the largest

ones ( lim
d→∞

�N =
√

A), respectively.
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Two size effect laws proposed by Bažant for geometrically sim-
ilar structures and the size effect laws are of the form:

type 1 : �N(d) = f ∞
r (1 + rDb

d
)
1/r

unnotched struct. (2)

type 2 : �N(d) = Bbft√
1 + d/d0

notched struct. (3)

where f ∞
r represents the elastic-brittle strength of concrete, r con-

trols the curvature and shape of the law, Db is the deterministic
characteristic length having the meaning of the thickness of the
cracked layer (if Db = 0, the behavior is elastic–brittle), ft denotes
the tensile strength, Bb (depending on the geometry of the struc-
ture and crack) and d0 are two unknown empirical constants to be
determined. In the first type (unnotched structures), the maximum
load is reached as soon as a macroscopic crack initiates. In the sec-
ond type (notched structures), cracks grow in a stable manner prior
to the maximum load. The material strength is bound for small sizes
by a plasticity limit whereas for large sizes the material follows the
linear elastic fracture mechanics.

In spite of many experiments exhibiting the size effect for
noticed concrete specimens, the size effect theories are still all
at empirical levels. In order to make clear what sources cause
the size effect and how they affect the member behaviors, the
numerical simulations are performed to investigate the size effect.
Some remarkable works have been published in the 1990s. For
example, statistical analyses were carried out with spatially cor-
related homogeneous distributions of tensile strength which were
assumed to be random [8]. Carmeliet [12] combined a simple non-
local damage model within a single finite element computational
model, and studied two different length parameters: the charac-
teristic length of the non-local damage model, and the correlation
distance for the random field. The size effects were also simulated
by many researchers [11,16,18,21,25,29].

We  attempt to propose an approach based on the first-order gra-
dient damage theory to capture the influence of damage gradients
on the size effect. The outline of the paper is as follows. In Section
2, the first-order gradient damage theory and damage evolution of
concrete are introduced. In Section 3, a numerical implementation
of the first-order gradient damage theory is represented. In Sec-
tion 4, the results of size effects in concrete beams with different
prescribed parameters are analyzed. And, a gradient damage size
effect law (GDSEL) for unnotched concrete beams is proposed. In
Section 5, the difference between the GDSEL and the existing size
effect laws is compared. The main conclusions are drawn in Section
6.

2. The first-order gradient damage theory and damage
evolution of concrete

2.1. The first-order gradient damage theory

In order to describe the interaction of microstructures in a mate-
rial, the first-order gradient damage theory was proposed by Zhao
et al. [5]. In this theory, the strain tensor εij , the scalar damage vari-
able D and the damage gradient D,m (D,m = ∂D/∂m (m = x, y, z)) served
as the state variables of the Helmholtz free energy per unit volume
�:

� = � (εij, D, D,m) (4)

�̇ = ∂�

∂εij

ε̇ij + ∂�

∂D
Ḋ + ∂�

∂D,m
Ḋ,m (5)

For an isothermal and infinitesimal deformation process, the
Clausius-Duhem inequation is

�ijε̇ij − �̇ ≥ 0 (6)

where �ij is the Cauchy stress tensor.
The substitution of (5) into the inequality (6) yields:(

�ij − ∂�

∂εij

)
ε̇ij −

(
∂�

∂D
Ḋ + ∂�

∂D,m
Ḋ,m

)
≥ 0 (7)

The inequality (7) holds for an arbitrary value of ε̇ij , which
requires

�ij − ∂�

∂εij

= 0 (8)

−
(

∂�

∂D
Ḋ + ∂�

∂D,m
Ḋ,m

)
≥ 0 (9)

Defining internal characteristic length parameters as:

∂D

∂D,m
= lm (m = x, y, z) (10)

where lx, ly, lz are internal characteristic length parameters on the
direction of x, y, z and have dimension of length. Obviously, when
lx = ly = lz , the damage model becomes an isotropic gradient dam-
age model. When lx /= ly /= lz , it is an anisotropic gradient damage
model.

The initial state of material can be assumed that: εij = 0, �ij = 0,
D = 0, D,m = 0, �0 = 0. The Helmholtz free energy � is expanded to
Taylor’s series. The series is truncated at the second power of εij , the
Nth power of D and the first power of D,m. Since εij is an infinitesimal
variable and D is a variable with a finite value (0 ≤ D ≤ 1). For the
elastic isotropic damage, the expansion of � is:

� =
N∑

r=1

C(r)Dr +
N∑

r=1

F (r)
ij

Dr εij + D,mM
ijm

εij +D,m

N∑
r=1

H(r)
ijm

Dr εij + 1
2

Cijklεijεkl

+ 1
2

N∑
r=1

A(r)
ijkl

Dr εijεkl + 1
2

D,m

N∑
r=0

B(r)
ijklm

Dr εijεkl + D,m

N∑
r=1

P(r)
m Dr (11)

where r = 1, 2. . .N. Note that the free energy density function � is
a scalar-valued function. Therefore, the coefficients C(r), Pm

(r) in Eq.
(11) should be the scalar coefficients since the damage variable D is
a scalar variable. Because of the same reason, the coefficients Pm

(r)

should be the vector, in addition, Fij
(r) should be the second-order

tensor coefficients, Mijm and Hijm
(r) should be the third-order tensor,

Aijkl
(r) and Cijkl are the fourth-order tensors, Bijklm

(r) is the fifth-order
tensor. So the products can have the scalar values according to the
Einstein’s summation convention.

The substitution of Eq. (11) into Eq. (8) yields:

�ij =
N∑

r=0

F (r)
ij

Dr + D,mM
ijm

+ D,m

N∑
r=1

H(r)
ijm

Dr

+
{

Cijkl +
N∑

r=1

A(r)
ijkl

Dr + D,m

N∑
r=0

B(r)
ijklm

Dr

}
εkl (12)

When the damaged material is unloaded completely to the ini-
tial state, it is seen that εij = 0, �ij = 0. Considering the irreversibility
of damage, D /= 0, D,m /= 0, from Eq. (12), it is found that:

N∑
r=0

F (r)
ij

Dr + D,mMijm + D,m

N∑
r=1

H(r)
ijm

Dr = 0 (13)

The substitution of Eq. (13) into Eq. (12) yields

�ij =
{

Cijkl +
N∑

r=1

A(r)
ijkl

Dr + D,m

N∑
r=0

B(r)
ijklm

Dr

}
εkl (14)
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