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1. Introduction

Broadly speaking, the branch of fluid mechanics known as
acoustics1 can be defined as ‘the study of irrotational compress-
ible flow.’ Like most other areas of physics, the field of acoustics
can be broken down into experimental and theoretical sub-fields.
In turn, the latter can, itself, be divided into two disciplines, namely,
that in which the equations considered are linear, and that in which
they are not.

If the signal strengths involved are relatively weak and the prop-
agation distances of interest are relatively short, then the inherently
nonlinear system of equations that describe sound propagation

∗ Tel.: +1 228 688 4338; fax: +1 228 688 5049.
E-mail address: pedro.jordan@nrlssc.navy.mil

1 Anticipating push-back from some readers, we  regard the study of longitudinal
waves in solids as an area of elasticity theory.

can, often to rather good accuracy, be approximated by linear par-
tial differential equations (PDE)s; this, of course, is the realm of
linear acoustics, on which essentially all of classical acoustics is
based.

In contrast, when the problems of interest involve ‘finite-
amplitude’ [29] acoustic signals and/or extreme propagation
distances, simple linear theory usually proves to be inadequate. This
occurs because the effects of nonlinearity, being both present in
the fundamental equations of fluid flow and cumulative in nature,
rapidly become felt over time and distance. As such, it would
appear that we are compelled, when confronted with such prob-
lems, to set aside our simple linear models in favor of their fully
nonlinear, and thus more challenging, counterparts. There is, how-
ever, another possibility: the so-called weakly-nonlinear modeling
approach. By this we mean the derivation of approximate equa-
tions of motion, which are based on the ‘small, but finite-amplitude’
(i.e., small Mach number) assumption, from the irrotational Euler
and Navier–Stokes–Fourier systems that, while relatively tractable
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0093-6413/Published by Elsevier Ltd.

dx.doi.org/10.1016/j.mechrescom.2016.02.014
http://www.sciencedirect.com/science/journal/00936413
http://www.elsevier.com/locate/mechrescom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechrescom.2016.02.014&domain=pdf
mailto:pedro.jordan@nrlssc.navy.mil
dx.doi.org/10.1016/j.mechrescom.2016.02.014


128 P.M. Jordan / Mechanics Research Communications 73 (2016) 127–139

from the mathematical standpoint, still capture the salient nonlin-
ear phenomena exhibited by compressible flows.

The aim of this communication is to conduct a historical review
of these weakly-nonlinear acoustic models, in particular, their for-
mulation, historical development, and relationship to each other,
over the century spanning the years 1910–2009. Our primary focus
shall be on propagation in single phase, single species2 compress-
ible fluids flowing in domains that are free of scattering bodies. To
this end, we first present, in Section 2, a review of both the fun-
damental equations governing compressible flow and the major
approximations of weakly-nonlinear theory. This is followed, in
Section 3, by a detailed chronology of the weakly-nonlinear model
equations of what can be called ‘traditional’ acoustic problems.
Lastly, in Section 4, chronologies of the weakly-nonlinear models
that describe propagation in relaxing fluids, bubbly liquids, and flu-
ids that saturate porous solids are presented, and aspects of these
models are briefly discussed.

2. Acoustic propagation in fluids: review of fundamental
equations

2.1. Lossless theory: the Euler equations

Assuming the absence of all external body forces and heat
sources, the homentropic3 flow of a lossless fluid is described by the
following system of first order PDEs known as Euler’s equations:

D�
Dt

= −�(∇ ·v), (1)

which is the continuity equation;

�
Dv
Dt

= −∇℘, (2)

the momentum equation; and

D�

Dt
= 0 (∇� = 0), (3)

the entropy production equation. Here, v = (u, �, w)  is the veloc-
ity vector, �(>0) is the mass density, ℘(>0) is the thermodynamic
pressure, � is the specific entropy, and D/Dt denotes the material
derivative operator.

To close our system, an equation of state (EoS) must be specified.
In the case of a perfect gas4 under homentropic flow, the general EoS
for a perfect gas (see Eqs. (19) below) reduces to the ‘adiabatic law’
[51, p. 478]

p = −℘0
[
1 − (�/�0)�

]
; (4)

see also Refs. [57, §1.1.1] and [72, §1-4]. Here and below, p := ℘ − ℘ 0
denotes the acoustic (or over) pressure; � = cp/cv is the adiabatic
exponent (or index), where we observe that � ∈ (1, 5/3] in the case
of perfect gases; and a zero subscript attached to a quantity denotes
the (constant) equilibrium state value of that quantity.

In the case of liquids, on the other hand, the situation is more
complicated; see Refs. [57, §1.1.2] and [86, §2.6]. One approach has
been to assume a polytropic law (i.e., one similar in form to Eq. (4)),
as in the case of what is known today as Tait’s EoS

℘ = B1(�/�0)� − B2. (5)

2 And, of course, mixtures of fluids that can been modeled as such; e.g., air.
3 Howarth [39, p. 3] credits M.P. Charlesworth with conceiving this term to

describe the special case of isentropic flow defined by Eq. (3); see also Thompson
[86, p. 60].

4 By which we  mean in the sense of Thompson [86, §2.5]; specifically, an ideal
gas  (i.e., a gas that obeys Eq. (21) below) in which cp > cv > 0, the specific heats at
constant pressure and volume, respectively, are constants.

Batchelor [4, §1.8] notes that Eq. (5) is in close agreement with
experimental data for water over a wide range of pressures, in
particular, those encountered in the deep ocean. Here, the expo-
nent � (>1), which we  take to be constant, has been found to be
� ≈ 7 in the case of water, and B1,2, also regarded as constants,5 are
determined by experimental measurements; see also Refs. [6], [57,
§1.1.4], as well as [86, p. 102].

It is noteworthy that Eqs. (4) and (5) are functions of only the
mass density; i.e., they are barotropic [86, p. 56] relations, as theory
indicates they must be when the flow in question is homentropic.

If we  limit our focus to acoustic propagation, meaning that the
flow is taken to be irrotational, it follows that v = ∇ �, where � is
the scalar velocity potential. Thus, on taking notice of the fact that
the homentropic assumption also means that � is everywhere and
always equal to its equilibrium state value, and employing Ref. [35,
Eq. (60.33a)] to recast the left-hand side (LHS) of Eq. (2), Sys. (1)–(3)
is reduced to

st = −∇ ·[(1 + s)∇�], (6)

(1 + s)∇
(
�t + 1

2
|∇�|2

)
= −c2∇s (∇×v = 0), (7)

� = �0, (8)

while Eqs. (4) and (5) become

p = −℘0
[
1 − (1 + s)�

]
, (9)

℘ = B1(1 + s)� − B2, (10)

respectively, where s = (� − �0)/�0 is known as the condensation.
Here, the speed of sound c, which is a thermodynamic variable, is
given by [86, §4.3]

c =
√
∂℘/∂�, (11)

an expression which we  stress is valid for both gases and liquids
[36, p. 999]. In the case of a perfect gas, however, Eq. (11) yields
the more explicit result c =

√
�℘/�, which we observe also holds

in the more general case of ideal gases [86, p. 165]. If it is also true
that the flow in question is homentropic, then one can, with the aid
of Bernoulli’s theorem [35, §48], recast this (latter) expression for c
as [38, §3.2]

c2 = c2
0 − (� − 1)

(
�t + 1

2
|∇�|2

)
, (12)

where, in this communication, c0(>0) denotes the speed of sound
in the undisturbed fluid [72, §1-9]. In the case of a perfect gas, c0 is
of course given by

c0 =
√

�℘0/�0. (13)

2.2. Thermoviscous theory: the Navier–Stokes–Fourier system

Now introducing the transport coefficients 
(>0), 
B(≥0), and
K(>0), all of which we regard as constant, and again assum-
ing the absence of all external body forces and sources of heat,
Sys. (1)–(3) is generalized to what Pierce [72, §10-1] calls the
Navier–Stokes–Fourier (NSF) system:

D�
Dt

= −�(∇ ·v), (14)

�
Dv
Dt

= −∇℘ + 
∇2v +
(

1
3

 + 
B

)
∇(∇ ·v), (15)

�ϑ
D�

Dt
= K∇2ϑ + ˚, (16)

5 In general, B1,2 are both slowly varying functions of � [4, §1.8].



Download English Version:

https://daneshyari.com/en/article/801541

Download Persian Version:

https://daneshyari.com/article/801541

Daneshyari.com

https://daneshyari.com/en/article/801541
https://daneshyari.com/article/801541
https://daneshyari.com

