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a  b  s  t  r  a  c  t

Tumour  growth  results,  in  particular,  from  cell–cell  interaction  and  tumour  and  healthy  cell  proliferation.
The  complexity  of the  cellular  microenvironment  may  then  be framed  within  the  theory  of  mixtures  by
looking  at  cell  populations  as the  constituents  of  a mixture.  In  this  paper  the  balance  equations  are
reviewed  to  account  for directionality  onto  a collective  migration  of  the  tumour  cell  population,  via
an  attractive  force  of  the  chemotactic  type, in addition  to  the  customary  pressure  term.  The  density  of
tumour  cells  turns  out to be governed  by  a  hyperbolic  differential  equation.  By  neglecting,  as  usual,  the
inertia  term  it follows  that the density  satisfies  a backward,  or forward,  diffusion  equation  according
as  the  attraction,  or pressure  effect,  prevails.  Uniqueness  of  the  solution  to  the  backward  equation  is
investigated  and a  family  of solutions  is  described.  An estimate  is  given  for the  growth  rate  of  a  tumour
profile.

©  2016  Published  by  Elsevier  Ltd.

1. Introduction

A tumour consists of the abnormal growth of a group of cells
whose behaviour is markedly different from that of the other cells
of the tissue. Solid tumors tend to destroy the surrounding extra-
cellular matrix (ECM), to invade it while replacing healthy cells,
and to spread to other tissues by the process of metastasis. Hence
the dynamics of tumour growth depends on cell–cell and cell–ECM
interactions, tumour and healthy cell proliferation, availability of
oxygen and nutrients, and so on [11].

A wide literature has been devoted to the formulation of deter-
ministic mathematical models of tumour growth (see, e.g., [8,18]).
Some simplified approaches consist of reaction-diffusion partial
differential equations (PDE) describing the evolution of tumour
cell density, enzyme concentration and/or nutrient density [21].
Further simplifications are obtained by considering spatially homo-
geneous cancer tissues, leading to systems of ordinary differential
equations for the unknown time-dependent concentrations of the
main constituents of a tumour [12]. More realistic approaches to
tumour growth involve the space properties of the cell popula-
tions and, in this sense, continuum mechanics offers the natural
framework for appropriate models. To capture the complexity of
the cellular microenvironment, often models have been framed
within the theory of mixtures [5] by looking at cell populations as
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the constituents of a mixture, the cell proliferation and death being
modelled by the mass growth associated with chemically-reacting
constituents. The papers [1,6,2,3,13] and refs therein provide a wide
view of the literature on the subject.

The main advantage of framing models of cell populations
within the theory of mixtures is that the theory embodies the basic
laws of physics, specifically, the balance equations for mass and
linear momentum. This general framework is supplemented with
specific assumptions regarding, e.g., the structure of the force fields
acting on cells [15], which should mainly come from experimen-
tal observations. Furthermore, the mass growths, rather then the
increase of cell numbers, account for proliferation and death of the
corresponding populations.

One major aim of the present contribution is to introduce model
forces accounting for a class of directional collective migration of
tumour cells during tissue invasion and metastasis [10,19,17] and
to discuss the inherent qualitative effects.

Indeed, it is known that cancer cells of some tumour types can
migrate individually or collectively during tumor growth. In col-
lective movement the cells involved can affect each other through
adhesion, force-dependent and signalling interactions. In particu-
lar directed cell migration is highly influenced by cellular sensing of
local gradients in the concentration of chemical factors. This mode
of cellular guidance is named chemotaxis and various external fac-
tors, both chemorepellents and chemoattractants, are considered
to model directionality onto migratory cell populations [17,22]. Of
course, chemical gradients do not act directly as external forces on
cells; rather, cells move within the tissue under the action of inter-
nal forces which may  arise, e.g., as a reaction to chemical gradients,
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interactions with the ECM, adhesion to other cells. From the macro-
scopic point of view we model this behavior of the cells in collective
migration as determined by a force term proportional to the gradi-
ent of the density (equivalently, volume fraction) of cells. A natural
interpretation is that the directions of growing tumour cell density
correspond to greater numbers of cell contacts and communica-
tion signals, which are ultimately responsible for the aggregative
behaviors.

The purpose of this paper is to set up a general scheme for col-
lective motion of migrating cancer cells, within the framework of
the mixture theory, under the assumption that the driving force is
proportional to the gradient of the density (or volume fraction) of
tumour cells. Additional force terms are also considered, such as
a friction-type force describing interactions with the ECM matrix.
The mixture is formed by a solid ECM, an extracellular liquid phase,
and the two cell populations of tumour and healthy cells. Attention
is then addressed to the determination of a PDE for the tumour cell
density.

Various assumptions are examined, which lead to qualitatively
different model equations for the tumour cell density: an hyper-
bolic equation, a parabolic equation and a parabolic equation for
backward diffusion. The parabolic equation for backward diffusion
occurs when the intensity of the attractive force is larger than the
pressure term. The occurrence of a parabolic backward equation
is the main novelty from the viewpoint of mathematics. Unique-
ness of the solution is shown to hold in one space dimension and
an integral expression for a class of solutions is established. By an
elementary argument, an estimate is given for the growth rate of a
tumour profile.

2. Balance equations

We  consider a solid phase, the extracellular matrix (ECM), and
a liquid phase, the extracellular fluid. Two cell populations are
regarded to live in the fluid, the tumour and the healthy cells. We
denote by the subscripts T, H, F, and E the quantities pertaining to
tumour cells, healthy cells, fluid, and ECM. The fluid contains also
chemical nutrients which are involved in the proliferation process
and the chemotaxis effects. Dead cells are taken to disintegrate into
waste products and re-usable materials within the extracellular
fluid.

We regard ECM as a fixed substratum and let the healthy cells
adhere to the substratum. Hence we say that the velocities vT, vF

are unknowns whereas vH and vE are assumed to be zero [15]. The
constituents are regarded as incompressible with the same true
mass density �. Hence it is convenient to use the volume fractions
�T, �H, �F, �E so that the effective mass densities are

�T = ��T, �H = ��H, �F = ��F, �E = ��E.

It is understood that

�T + �H + �F = f < 1

f being the porosity of the ECM.
The balances of mass for the T, H, and F populations are given by

the continuity equations

∂t�T + ∇ · (�TvT ) = h, (1)

∂t�H = −g, (2)

∂t�F + ∇ · (�FvF ) = −h + g, (3)

where h and g are functions of �T, �H, and the volume fraction �N

of the nutrients. For the sake of simplicity we regard the nutrients
as a part of the fluid and do not consider them as a constituent with
proper balance equations. The mass density of the ECM is assumed
to be constant because vE = 0 and the ECM does not participate into

proliferation or death processes. In so doing we neglect that the
ECM is degraded by the action of tumour cells. Possible expressions
for the growths h and −g of the cells populations are given in detail
e.g. in [12,20]. The growth h models the production of tumour cells
as a consequence of the interaction with the fluid (water, nutrient,
and other growth factors) and the decrease because, e.g., of the nat-
ural killers. The minus in front of g is a reminder that �H is expected
to decrease in favour of �F. The growth in the fluid merely accounts
for the overall balance of mass in the mixture.

To account for directionality onto the migratory tumour cell
population we  allow for two  terms in the balance equation of
momentum, namely a pressure (gradient) which provides repul-
sion and a density gradient which provides attraction. We  then
write the equations of motion for the constituents as

�∂t(�TvT ) + �∇ · (�TvT ⊗ vT ) = −∇pT + ˛∇�T
−ˇ�TvT + �(vF − vT ),

(4)

�∂t(�FvF ) + �∇ · (�FvF ⊗ vF ) = −∇pF + �(vT − vF ), (5)

vH = vE = 0,

where ˛, ˇ, and � are positive constants. The structure of Eqs. (4)
and (5) is consistent with the theory of mixture. Specifically, we
assume that the stress tensor for the tumour cells and the fluid is
merely a pressure tensor while  ̨ ∇ �T, where  ̨ > 0, is the (attrac-
tive) body force on the tumour cells. The pressures pT and pF are
functions of �T and �F, respectively. Moreover,

−ˇ�TvT = −ˇ�T (vT − vE)

is the friction force between tumour cells and ECM. Likewise,
�(vF − vT) and �(vT − vF) are the interaction forces between tumour
cells and fluid.

The term  ̨ ∇ �T in the equation of motion for tumour cells is
unusual in the literature though it is not fully new. In [14,7] the
pressure, on the tumour cells, is taken to be proportional to �T,

pT = �TP,

P being viewed, to our mind, as the pressure of the mixture. Next
the interaction force is taken as

mT = P∇�T + ....

the dots indicating contributions arising from the relative veloci-
ties. Hence the contribution to the equation of motion is

−∇pT + mT = −�T∇P + ...

It is apparent that the term P ∇ �T in mT has been so chosen that the
resulting force in the equation of motion is −�T times the gradient
of the pressure P and thus provides diffusion. To our mind, diffusion
is just naturally related to the pressure pT of the tumour phase;
moreover, an attractive term ∇�T in mT need not have just P as a
factor and so a generic term  ̨ ∇ �T seems more appropriate in that
it models the attraction between tumour cells driving the collective
migrative motion.

Mathematically, the contribution  ̨ ∇ �T has the same structure
as chemotactic effects, but �T refers to cells, not to chemical factors;
moreover, �T is constrained by the mass balance equation (1) rather
then a reaction-diffusion equation.

Quite often the interaction force mT is relatively small and then
the effective, driving force is the resultant of the pressure term
− ∇ pT and the attractive force  ̨ ∇ �T. This aspect becomes appar-
ent in the next developments.
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