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a  b  s  t  r  a  c  t

The  paper  presents  a numerical  model  for  simulating  a granular  flow  and  its  deposition  on  an  inclined  bed.
A granular  material  is described  as an  elastic–plastic  continuum  and  its constitutive  law,  namely  Hooke’s
law,  is  discretized  on  the  basis  of  the Smoothed  Particle  Hydrodynamics  (SPH)  method.  In the  equation
of  motion,  however,  the artificial  viscosity,  which  is  widely  used  in  SPH,  is  not  applied.  The diffusive  term
derived  from  Hooke’s  law  is introduced  with  a diffusion  coefficient  that  varies  depending  on  the  stress
and  strain  rate  based  on  the  Drucker–Prager  yield  function.  The  model  is  verified  and  validated  through
two  numerical  tests.  It is  shown  that the  basic  elastic–perfectly  plastic  characteristics  are  reproduced  with
a simple  shearing  test.  The  effects  of  the  diffusion  coefficient  and  spatial  resolution  are  investigated  to
show  the validity  of the  model.  In the  simulation  of  the  gravitational  collapse  of  a granular  column  on  an
inclined  bed,  the  performance  of  the  model  from  the final  deposition  profile,  the  time  history  of the  front
position  of  the granular  flow,  the  maximum  runout  distance,  and  the  velocity  profile  are  investigated  for
several  cases  of basal  inclinations.  The calculated  results  show  good  agreement  with  the  experimental
results.

©  2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

A granular flow is a phenomenon closely related to powder
technology and geotechnical engineering. Especially, in geotech-
nical engineering, a granular flow can be treated as a simple model
to predict the behavior of a landslide or debris flow. Hence, the
deposition shape and runout distance are of considerable research
interest.

A dam break, or the collapse of a granular column, is one of the
simplest benchmark tests to investigate the behavior of a granular
flow and verify the performance of a numerical model. Therefore, it
has been carried out by many researchers using both experimental
(e.g., [1–4]) and computational approaches. In a numerical simula-
tion, a granular flow is generally described by two types of media:
an aggregation of discrete elements and a continuum. The Discrete
(or Distinct) Element Method (DEM) [5] is a widely used method
for the former type. In this method, it is intuitively easy to explain
the simulation results because each grain is expressed by a spher-
ically shaped computational particle. A dam-break simulation by
the DEM has been conducted (e.g., [6–8]). A treatment as a con-
tinuum was proposed by Savage and Hutter [9]. They showed that
it is possible to describe the behavior of a finite mass of granular

∗ Corresponding author. Tel.: +81 75 383 3312; fax: +81 75 383 3312.
E-mail address: ikari@particle.kuciv.kyoto-u.ac.jp (H. Ikari).

material by applying the equation of motion of a fluid, although a
granular material is not a continuum. A 2D dam-break simulation
has been carried out on the basis of the Navier–Stokes equation
(e.g., [10–12]). In order to simulate the behavior of a granular flow,
however, a viscosity coefficient that varies depending on the pres-
sure and strain rate, like a Herschel–Bulkley fluid, is required (e.g.,
[12,13]). An elastic–plastic model can be also applied to the gran-
ular flow simulation (e.g., [14,15]). In the case where the granular
material is regarded as soil and the prediction of a slip surface or
stress field is needed, it is suitable to apply an elastic–plastic model.

The particle method, or the fully Lagrangian mesh-free method,
such as the Smoothed Particle Hydrodynamics (SPH) method [16]
and Moving Particle Semi-implicit (MPS) method [17], has been
mainly applied to simulate fluid behavior such as a violent sloshing
flow (e.g., [18,19]) and wave overtopping (e.g., [20,21]). A granu-
lar flow simulation using a particle method has also been carried
out. For the particle method, a preliminary calculation of the ran-
dom particle arrangement, which is needed in the DEM simulation,
is not necessary, and it is easy to track the discrete behavior of a
granular flow. For example, Minatti and Paris [22] and Liang and He
[23] have simulated the collapse of a granular column by using a
fluid-based model. Bui et al. [24] have succeeded in simulating large
deformation of soil by an elastic–plastic model. However, it is diffi-
cult to reproduce the final deposition shape in a fluid-based model
accurately owing to the pressure noise, which is an inevitable draw-
back of the standard particle method. In addition, an elastic–plastic
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model based on a particle method has not been validated for the
inclined-bed case.

In the present paper, an SPH-based numerical model for simulat-
ing a granular flow is proposed and applied to the simulation of the
collapse of a granular column on an inclined bed. The model treats
a granular material as an elastic–plastic continuum; however, the
artificial viscosity widely used in conventional SPH simulations is
not included in the equation of motion. A diffusive term derived
from the constitutive law is introduced with a diffusion coefficient
that varies depending on the stress and strain rate, as in the models
of Jop et al. [13] and Savage et al. [12]. The performance of the model
will be demonstrated and compared to the experimental results by
Hungr [3] and Lube et al. [4].

2. Numerical model

2.1. Governing equations

The governing equations are as follows:

D�

Dt
+ �∇ · u = 0 (1)

�
Du

Dt
= ∇ · � + �g (2)

where � is the density, u is the velocity vector, � is the stress tensor,
and g is the gravitational acceleration vector. The time derivative
of � is described with the Jaumann stress tensor as

�̇ = �̇� − ��̇ + �etr(�̇)I + 2�e�̇ − �etr(�̇p)I − 2�e�̇p, (3)

�̇ = 1
2

(∇u + (∇u)T ), (4)

�̇ = 1
2

(∇u − (∇u)T ), (5)

in which �̇ is the strain rate tensor, �̇ is  the spin tensor, and I is
the unit tensor. The Lamé parameters, �e and �e, are defined by
the Young’s modulus E and the Poisson’s ratio v, respectively, as
follows:

�e = E�

(1 + �)(1 − 2�)
, �e = E

2(1 + �)
(6)

In the present model, soil, namely, dry granular material in this
paper, is treated as an elastic–perfectly plastic material. The total
strain rate �̇ is divided into the elastic strain rate �̇e and the plastic
strain rate �̇p:

�̇ = �̇e + �̇p. (7)

ε̇p can be evaluated on the basis of the plastic flow rule:

�̇p = �̇ ∂gp
∂�
, (8)

in which gp is the plastic potential function. �̇ is the rate of change
of the plastic multiplier and can be obtained from the consistency
condition, Hooke’s law, and Eqs. (7) and (8) as follows [24]:

�̇ =
�etr

(
∂fp
∂�

)
tr(�̇) + 2�e

∂fp
∂�

: �̇

�etr
(
∂fp
∂�

)
tr
(
∂gp
∂�

)
+ 2�e

∂fp
∂�

: ∂gp
∂�

, (9)

where fp is the yield function. In the present model, the
Drucker–Prager function is adopted as both the yield and plastic
potential functions:

fp =
√
J2 + ˛�I1 − �

gp =
√
J2 + ˛ I1

}
(10)

˛� = tan �√
9 + 12 tan2 �

;  ˛ = tan  √
9 + 12 tan2 

;

� = 3c√
9 + 12 tan2 �

(11)

where I1 = tr(�) is the first invariant of the stress tensor, and J2 is
the second invariant of the deviatoric stress tensor.   is the internal
friction angle, and c is the dilatancy angle, and c is the cohesion.

As for the problems of numerical errors such as tension cracking
and a stress outside the yield surface, we  address them using the
same procedures as Bui et al. [24].

2.2. Diffusive term

Even if the term related to the divergence of the stress is
discretized in an SPH formulation, we cannot carry out a stable
calculation owing to the tension instability. Bui et al. adopted an
artificial viscosity to avoid a numerical instability. The present
model applies a diffusive term derived from the following proce-
dures instead of the artificial viscosity.

The first term on the right hand side of Eq. (2) can be written
with the time step k as follows:

∇ · �k+1 = ∇ · (�k + �̇	t)

= ∇ ·
{

�k +
(

�̇k�k − �k�̇k + �etr(�̇
k)I + 2�e�̇

k

−�etr
(

�̇kp

)
I − 2�e�̇

k
p

)

t
}

(12)

The divergence of the strain-rate tensor can be developed as
follows:

∇ · �̇ = 1
2

∇ · tr(�̇)I + 1
2

∇2u. (13)

From Eqs. (12) and (13), we  can obtain the following diffusive
term.

∇ · �k+1 = ∇ · �∗ + �0∇2uk; �0 = �e
t  (14)

�∗ = �k +
(

�̇k�k − �k�̇k + (�e + �e)tr(�̇
k)I

−�etr
(

�̇kp

)
I − 2�e�̇

k
p

)

t  (15)

We  can conduct a stable simulation by applying the diffusive term
in Eq. (14) as an additional viscosity to Eq. (2); however, we  cannot
accurately simulate the behavior of a granular material because
the influence of the viscosity becomes too large in this diffusion
coefficient. Hence, we adopt the following coefficient.

Savage et al. [12] derived a diffusion coefficient from the 2D
noncohesive Mohr–Coulomb equation as follows:

�MC = (I1/2) sin �

2|�̇| , |�̇| =
√

1
2

�̇ : �̇ (16)

This can be also described in the Drucker–Prager form as

�DP = ˛�I1
2|�̇| (17)

These diffusion coefficients vary depending on the stress and
strain rate. The difference between Eqs. (16) and (17) is the param-
eter multiplying I1. Fig. 1 shows the variation in these parameters
in terms of the internal friction angle �. �MC is slightly larger
than �DP for the same friction angle and strain rate. In the present
model, �DP is applied instead of �0; however, its range is limited as
�min ≤ �DP ≤ �max in order to avoid zero or infinity. �min and �max

are the minimum and maximum values, respectively.
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