Accepted Manuscript

Facile one-step synthesis of $Cu_{1.96}$ S/g- C_3N_4 0D/2D p-n heterojunctions with enhanced visible light photoactivity toward ciprofloxacin degradation

Shuaishuai Ma, Yaping Song, Peng Xu, Xiaofei Fu, Zhaolian Ye, Jinjuan Xue

PII: DOI:	S0167-577X(17)31643-9 https://doi.org/10.1016/j.matlet.2017.11.026
To appear in:	MLBLUE 23392 Materials Letters
Received Date: Revised Date: Accepted Date:	27 August 201716 October 20176 November 2017

Please cite this article as: S. Ma, Y. Song, P. Xu, X. Fu, Z. Ye, J. Xue, Facile one-step synthesis of $Cu_{1.96}S/g-C_3N_4$ 0D/2D p-n heterojunctions with enhanced visible light photoactivity toward ciprofloxacin degradation, *Materials Letters* (2017), doi: https://doi.org/10.1016/j.matlet.2017.11.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Facile one-step synthesis of Cu_{1.96}S/g-C₃N₄ 0D/2D p-n heterojunctions with enhanced visible light photoactivity toward ciprofloxacin degradation

Shuaishuai Ma^a, Yaping Song^a, Peng Xu^a, Xiaofei Fu^a, Zhaolian Ye^{a*}, Jinjuan Xue^{b*} a College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, PR China

b School of environmental and safety engineering, Changzhou University, Changzhou 213164, PR China

Abstract: Novel $Cu_{1.96}S/g-C_3N_4$ 0D/2D p-n heterojunctions were successfully synthesized *via* a facile one-step calcination approach using thiocarbamide as both precursor and sulfur source. The $Cu_{1.96}S$ nanoparticles with sizes of 3-10 nm were closely anchored on the surface of $g-C_3N_4$ with good dispersion and the $Cu_{1.96}S/g-C_3N_4$ nanocomposites were used as a photocatalyst for photodegradation of ciprofloxacin (CIP) under visible light. The experimental results demonstrated that the visible light photocatalytic activity of the $Cu_{1.96}S/g-C_3N_4$ 0D/2D p-n heterojunction was significantly enhanced in comparison with pure $g-C_3N_4$ and the degradation rate was up to about 3.2 times that of pure $g-C_3N_4$. The increased photocatalytic activity of the $Cu_{1.96}S/g-C_3N_4$ and $Cu_{1.96}S$, which were conducive to avert the aggregation of small $Cu_{1.96}S$ nanoparticles and suppresses the recombination of photoinduced charge. Moreover, the $Cu_{1.96}S/g-C_3N_4$ photocatalyst exhibited high stability for CIP degradation even after seven successive cycles.

Keywords: Cu_{1.96}S/g-C₃N₄; Semiconductors; Heterojunctions; Nanocomposites; Ciprofloxacin; Visible light photocatalysis.

1. Introduction

During the past several decades, aqueous organic contaminants such as dyes, antibiotics, and agrochemicals, discharged from hospitals, industrial activities and households, have become increasingly harmful to human health and the eco-environment [1]. Of the various

^{*} Corresponding authors.

E-mail address: bess_ye@jsut.edu.cn (Z. Ye), xuechem@163.com (J. Xue)

Download English Version:

https://daneshyari.com/en/article/8015452

Download Persian Version:

https://daneshyari.com/article/8015452

Daneshyari.com