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a  b  s  t  r  a  c  t

The  dynamic  behaviour  of a micro-cantilever  that  is transversely  excited  at  its  base  is investigated  in  this
paper. The  base  actuation  is provided  by thermal  cycles  via  taking  the  advantage  of  thermal  expansion.  The
Euler–Bernoulli  equation  along  with  corresponding  boundary  conditions  is used  to model  the  continuous
cantilever  beam.  The  resultant  boundary  value  problem  takes  into  account  the thermal  expansion  and
stiffness  of the  actuator  at the  base  as well  as the effect  of  the  surrounding  gas  or  liquid.  A  closed-form
analytical  model  is developed  to compute  natural  frequencies,  mode  shapes,  and  harmonic  response  of
the vibrating  cantilever,  in  addition  to an  integral  function  for  quality  factor.  The model  is  validated  via
a  finite  element  (FE)  analysis  using  ANSYS  commercial  package.  This  validation  shows  that  the  proposed
model  can  properly  predict  the  cantilever’s  vibrating  behaviour.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The introduction of micro-electro-mechanical systems (MEMS)
in the last few decades has accelerated the advancement of tech-
nology in various areas and fields. MEMS  technology has wide
applications in aerospace, defence, automotive, consumer elec-
tronic products, biomedical devices, and even emerging technology
sectors. A comprehensive discussion on various applications has
been presented by Maluf and Williams [1]. In general, MEMS
devices are used for sensing or/and actuation. Amongst different
architectures used for this purpose at micro-scale, micro-beams
and particularly micro-cantilever beams are of high interest,
primarily due to their simple design [2]. Micro-cantilevers are
used in probe of scanning force microscopy and scanning tun-
nel microscopy [3], mass sensing [4], wafer probes [5], energy
harvesters and micro-generators [6], bio-sensors [7,8], frequency
doublers [9] and many other purposes [1].

It should be noted that in most of the above-mentioned appli-
cations the micro-cantilevers vibrate at high frequencies through
excitation applied via actuators. There are various techniques to
actuate MEMS  devices to vibrate at high frequencies. Some of the
most common approaches include: thermal, electrostatic, electro-
magnetic, and piezoelectric actuation [2]. Thermal actuation has
the advantage of producing relatively large force and displacement.
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Moreover, it has been proven that in practice thermal cycles can be
easily applied in order of a few hundred MHz  [10]. This allows them
to be effectively implemented in the resonant MEMS  devices [11].
In addition, thermal actuators are generally easier to manufacture
due to the fact that the main principle behind this type of actu-
ation is thermal expansion and a wide range of materials can be
used. Temperature rise can be simply provided through an electric
current and cooling cycle is facilitated by conduction to the bases
and substrate, convection to the ambient fluid (gas) and/or radia-
tion. On the other hand, the amount of power consumption in the
thermal actuators is relatively high and the hazard of overheat-
ing is significant. Thus, thorough analysis and design is necessary
for the thermally actuated devices. In general, in most cases ther-
mally actuated MEMS  are excited in their resonance frequency (or
frequencies close to it) in order to increase the performance [12].
Therefore, the analysis of their free vibration in order to detect
the resonance/natural frequencies and their behaviour at these fre-
quencies are extremely important.

This paper investigates a simple yet effective actuation tech-
nique to vibrate a generic micro-cantilever through vertical
excitation of its base. This is achieved by an element, the actu-
ator, which expands when heated. An analytical formulation for
finding the natural frequency of the device and its response to
the harmonic heating cycle is studied. The characteristic equation
and closed form formulas representing the displacement and stress
along the cantilever are presented.

There have been numerous studies in the past for vibration anal-
ysis of micro-cantilevers [13–15]. Wu  and Chang [16] modelled
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Fig. 1. (a) Geometry of the cantilever and actuator in a MEMS  device; (b) the
schematic of the mechanical model used for driving the equations of motion and
boundary conditions.

vibrations of a micro-cantilever that was thermally excited via
the bimorph effect. As an attempt to apply excitation at the base
of the cantilever, Bouwstra et al. [17] manufactured and tested a
micro-cantilever actuated via base rotation. Later on, Syms [18]
took advantage of base rotation using cold and hot arms for rota-
tion of beam. Similarly, Heinrich et al. [19] tackled the case of a
cantilever vibrating laterally (in-plane) using a simplified approach
via applying harmonic rotations at its base. However, besides the
slight difference between their methods of excitation (base rota-
tion) and current approach (vertical motion at base), the effect of
temperature change on the vibration was not considered directly
and was transformed into its equivalent rotations.

This paper presents the analytical model of a cantilever
Euler–Bernoulli beam mounted on an elastic base (actuator) and
surrounded by an ambient fluid. Electro-thermal actuation at the
base is taken into account by harmonic temperature change in the
actuator. As a result, the expansion and contraction cycles in the
elastic base results in vibrations of the beam. The boundary value
problem is solved analytically to find the characteristic equation,
natural frequency and mode shapes. Results are compared to result
of modal analysis using ANSYSTM. Similarly, the harmonic response
of the system is extracted as a closed form formula. Validation of
the harmonic response is made with an analogous case in ANSYS,
which applies displacement-controlled excitation at the base. It has
been shown that, applying the resultant displacement from a ther-
mal  expansion can be used as a coherent approximation to study
thermal actuation [19]. Presence of ambient fluid induces hydro-
dynamic forces and damping, therefore the quality factor for the
system is formulated as well.

2. Micro cantilever

Fig. 1(a) shows a schematic design of the studied thermally actu-
ated cantilever. The actuator, i.e. the expanding element, is placed
underneath the beam. In this figure, the actuator is connected to
conductors that provide the power to heat up the actuator via Joule
effect. Fig. 1(b) shows the schematic of the mechanical model used

for studying the behaviour of this system. As it can be seen in the
figure, the actuator is assumed to be a block of solid material that
contributes to the vibration response through its stiffness, which
can simply be calculated via:

kbase = EbaseAbase

tbase
(1)

where kbase is the stiffness, Ebase is the Young modulus of the mate-
rial used in the base, Abase is the cross section area of actuator
(simply calculated by lbase times out-of-plane thickness, w), and
tbase is the thickness of actuation layer.

3. Boundary value problem

3.1. Continuous beam equations

The equation of motion for the Euler–Bernoulli beam under
small deformation can be derived as following [20]:

EI
∂4u(x, t)
∂4x

+ m
∂u2(x, t)
∂t2

= q(x, t) (2)

where u(x,t) is the total beam deflection. E is the stiffness of the
beam material and I is the second moment of inertia relative to the
neutral axis of the beam; m represents the weight per unit length
of the beam; q(x,t) is the distributed load on the beam (in this case
resulted from fluid forces along the beam); and x and t are the spa-
tial coordinate along the length of the beam and time, respectively.
In general, the above equation can be solved using the boundary
(and initial) conditions that are imposed on the system. Defining F1
and u1 as the force and displacement at the top of actuator, respec-
tively, the following boundary conditions can be identified for the
micro-cantilever depicted in Fig. 1(b):

∂u(x, t)
∂x
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x=0

= 0 (3a)
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∂x3
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= −F1 (3b)

∂2
u(x, t)
∂x2
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= 0 (3c)

∂3
u(x, t)
∂x3

∣∣∣∣
x=L

= 0 (3d)

Using the thermo-elastic formulation for a one-dimensional ele-
ment (i.e., actuator), and taking into account thermal expansion:

F1 = u1kbase − ˛tbasekbase��(t) (4a)

u1 = u(0, t) = C2 + C4 (4b)

where  ̨ is the linear expansion coefficient of the actuator material.
Note that ��(t) in this formula is the source for the thermal

actuation. Indeed, the thermal expansion in the actuator results in
a combination of force and displacement (F1 and u1), which leads
to the vibration of the micro-cantilever. In this study only the free
vibration and harmonic response of the beam is considered, thus
��(t) = 0 and ��(t) = ��eiωt are considered respectively, where
i = √−1, � = 2�f, and f is the frequency of harmonic vibration.

3.2. Hydrodynamic force

For solving the partial differential equation (PDE) presented in
Eq. (2), the method of separation of variable [21] can be used by
replacing u(x,t) = w(x)g(t). Considering the fact that the system is
under harmonic loading and field variables behave harmonically
(linear and small deformation assumption), the time-dependency
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