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a  b  s  t  r  a  c  t

We  examine  the surface  tension-induced  stress  concentration  around  an  elliptical  hole  inside  an
anisotropic  half-plane  with  traction-free  surface.  Using  conformal  mapping  techniques,  the  corre-
sponding  complex  potential  in the  half-plane  is  expressed  in a series  whose  unknown  coefficients  are
determined  numerically.  Our  results  indicate  that  the  maximum  hoop  stress  around  the  hole  (which
appears  in  the  vicinity  of  the  point  of  maximum  curvature)  increases  rapidly  with  decreasing  distance
between  the  hole  and the  free  surface.  In  particular,  for  an  elliptical  or even  circular  hole  in an  anisotropic
half-plane  we  find  that,  with  decreasing  distance  between  the  hole  and  the  free  surface,  the  hoop  stress
can  switch  from  compressive  to  tensile  at certain  points  on  the  hole’s  boundary  and  from  tensile  to  com-
pressive  at  others.  This  phenomenon  is absent  in  the case  of an elliptical  or even circular  hole  in the
corresponding  case  of an  isotropic  half-plane.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The modeling and analysis of an elastic half-plane containing
holes or inclusions is well-known to have theoretical and practi-
cal applications in engineering science. For example, in integrated
circuits, the passivated metallic line between the passivation layer
and the underlying substrate may  be modeled more realistically as a
thermal inclusion in a half-plane rather than in a whole plane since
the passivation layer is normally much thinner than the substrate
[1]. Considerable research is available in the literature concern-
ing the problem of an elastic half-plane with circular hole(s) [2–6],
circular inclusion(s) [7–10], elliptical inclusions [11], non-elliptical
inclusions [12] and even an arbitrarily-shaped inclusion inside an
isotropic or anisotropic half-plane [1,13]. We  mention here that the
results in Refs. [1,13] are restricted to the case when the inclusion
has the same material properties as the surrounding matrix (essen-
tially to prevent the inclusion from degenerating into a hole). The
analysis of structures containing holes or inclusions located near
the edge of the half-plane is also of particular interest since the
proximity of the hole or inclusion to the edge is known to affect the
stress distribution around the hole or inclusion.

Recently, considerable attention has been given to the study of
materials and structures containing nano-holes or nano-inclusions
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mainly because of their unique physical and mechanical prop-
erties. It is well-known that as the dimension of a hole or
inclusion decreases toward the nanoscale, surface/interface effects
induced by the contributions of surface/interface energy and sur-
face/interface tension (usually neglected at higher order length
scales) can make a substantial contribution to the elastic fields sur-
rounding the holes or inclusions. Consequently investigations into
problems involving nano-holes or nano-inclusions inside an elastic
half-plane have indeed incorporated surface/interface effects into
the model of deformation but most have been restricted to simple
cases where the hole or inclusion is circular (see, for example, Refs.
[14–16]) with only a few dealing with the non-circular case (see,
for example, Refs. [17,18]) and all are limited to the case of isotropic
materials. To the authors’ knowledge, the analysis of problems
involving holes or inclusions in an anisotropic half-plane subjected
to plane deformations remains absent from the literature even in
the simpler case when surface/interface effects are ignored. In this
paper, we present an efficient method to deal with the problem
of stress concentration around an elliptical hole in an anisotropic
half-plane subjected to plane deformations when surface tension is
included on the boundary of the hole. This assumption is reasonable
for problems involving small strain. In fact, in certain technological
applications, the effect of deformation-dependent surface elastic-
ity has been found to be small compared to that of surface tension
[19,20].

The paper is organized as follows. The mathematical model is
established in Section 2 with corresponding boundary conditions
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described in terms of two complex potentials defined in the half-
plane. In Section 3, conformal mapping techniques are used in
conjunction with Fourier expansion methods to determine the
complex potentials of the half-plane. Various numerical examples
are given in Section 4 to verify the accuracy of the present method
and also to demonstrate the influence of the half-plane’s free sur-
face on the surface tension-induced stress concentration around
circular and elliptical holes in the half-plane. Finally, the main
results are summarized in Section 5.

2. Mathematical model

As shown in Fig. 1, we consider an anisotropic (lower) half-
plane containing an elliptical hole whose boundary is described
by the curve L. The elliptical hole is centered at y0 on the negative
y-axis and has semi-major and semi-minor axes denoted by a and b,
respectively. The major axis is assumed to be inclined at an angle ˛
to the positive x-axis. As noted above, we consider only the contri-
bution of surface tension and disregard the deformation-dependent
surface elasticity on the boundary of the hole. Consequently in our
present problem, the edge L′ of the half-plane is traction-free while
on the hole’s boundary L, the traction �nn (along the normal to the
curve L), induced by the constant surface tension T, is described by

�nn = T
dˇ

ds
, on L, (1)

where dˇ/ds represents the curvature of L;  ̌ (shown in Fig. 1) is
the angle between the positive x-axis and the tangent to the curve
L and ds is the arc length of an element of L along its tangent. With
the boundary conditions on L in mind, we rewrite Eq. (1) as

YL = T
dˇ

ds
cos ˇ, on L,

XL = −T
dˇ

ds
sin ˇ, on L,

(2)

where XL and YL are, respectively, the x- and y-components of the
traction on L.

The stress distribution in the anisotropic half-plane can be
expressed in terms of two complex potentials ϕi(zi) (zi = x + �iy, i = 1,
2) by [21]

�xx = 2Re[�2
1ϕ′

1(z1) + �2
2ϕ′

2(z2)],

�yy = 2Re[ϕ′
1(z1) + ϕ′

2(z2)],

�xy = 2Re[�1ϕ′
1(z1) + �2ϕ′

2(z2)],

(3)

where �1 and �2 are two distinct complex roots with positive imag-
inary parts with each determined by the following fourth-order
equation in �,

a11�4 − 2a13�3 + (2a12 + a33)�2 − 2a23� + a22 = 0, (4)

Fig. 1. Anisotropic half-plane containing an elliptical hole with surface tension.

Fig. 2. Domain of definition of the complex potentials in the half-plane.

Here, the constants aij (i, j = 1, 2, 3) are the compliance
coefficients of the anisotropic material occupying the half-plane.
Fig. 2 shows the domains of definition of the two complex poten-
tials ϕ1(z1) and ϕ2(z2) in which the curves L1 in the z1-plane
and L2 in the z2-plane both correspond to the hole’s bound-
ary L in the xy-plane while the edges L′

1 in the z1-plane and
L′

2 in the z2-plane both correspond to the free surface L′ in the
xy-plane.

The traction boundary conditions on the hole’s boundary L and
the free surface L′ are described in terms of ϕ1(z1) and ϕ2(z2) as [21]

2Re[ϕ1(z1) + ϕ2(z2)] = T sin  ̌ + A,

2Re[�1ϕ1(z1) + �2ϕ2(z2)] = −T cos  ̌ + B,

z1 ∈ L1, z2 ∈ L2,

⎫⎪⎬
⎪⎭ (5)

2Re[ϕ1(z1) + ϕ2(z2)] = A′,

2Re[�1ϕ1(z1) + �2ϕ2(z2)] = B′,

z1 ∈ L′
1, z2 ∈ L′

2,

⎫⎪⎬
⎪⎭ (6)

where A, B, A′ and B′ are real constants to be determined. We
note that these constants do not influence the final stress dis-
tribution in the half-plane. We mention also that the boundary
condition (5) is obtained via integration of Eq. (2) with respect
to the arc length s along the curve L. In what follows, we will
determine the complex potentials ϕ1(z1) and ϕ2(z2) in the entire
regions S1 and S2, respectively, using the boundary conditions
(5) and (6).

3. Solution procedure

Note that the domain of definition Si (i = 1, 2) of the complex
potential ϕi(zi) (i = 1, 2) can be interpreted as the intersection of
the infinite region (of the zi-plane (i = 1, 2)) lying outside the hole
bounded by Li (i = 1, 2) with the entire lower zi-half-plane (with no
hole), so that, based on the principle of superposition, ϕi(zi) (i = 1,
2) can be expressed in the form

ϕi(zi) =
+∞∑
j=1

ai,j �−j
i

+
+∞∑
j=1

bi,j �j
i
, i = 1, 2; (7)

where ai,j and bi,j are constant coefficients to be determined. The �i
– and �i – planes (i = 1, 2) are associated with the zi-plane (i = 1, 2)
via the conformal mappings [21,22],

zi = ωi(�i) = �iy0 + a0 − I�ib0

2
�i + ā0 + I�ib̄0

2
�−1

i
,

a0 = a cos  ̨ + Ib sin ˛, b0 = b cos  ̨ + Ia sin ˛,

|�i| ≥ 1, i = 1, 2; (8)
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