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a  b  s  t  r  a  c  t

In  the  present  paper  we  examine  the  Saint-Venant  end  effect  in the  nano  tubes  via  a continuum  mechan-
ics  with  consideration  of surface  elasticity.  The  Saint-Venant  end  effect  is quantitatively  described  by the
decay  rate.  By  analytically  solving  an  axial-symmetric  torsion  in a circular  cross-section  tube  configura-
tion,  we  demonstrate  that  the  decay  rate  decreases  as the radius  of  the  nano  wire/tube  decreases  with
consideration  of  the  surface  effect.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

When people study the deformation of the nano wires and nano
tubes, continuum mechanics has been one of the powerful options
[1]. It has also been noticed that on top of the classical continuum
mechanics theory for the bulk materials, the surface elasticity must
be included in the analysis as the surface to bulk ratio is considered
to be high in nano wire or nano tube configurations. The surface
mechanics theory addressing the surface effect was  proposed by
Gurtin and Murdoch [2], and Gurtin et al. [3]. We  will adopt the
spirit of their theory of the surface elasticity in the present study
on the end-effect of the nano wires and nano tubes.

Regarding the end effect, we would like only trace back the
research activities in the recent decades (e.g., a review article by
Horgan [4]). The end effect was named after Saint-Venant with
great conceptual importance in the classical mechanics of mate-
rials. For a slender bar, Saint-Venant principle stated that the
balanced end forces can only affect the end region which is about
the distance of the characteristic dimension of the cross section
of the bar. A rigorous mathematical theory has been formulated
after 1980s by using the perturbation asymptotic expansion con-
cept. The Saint-Venant solution is the outer expansion, and the end
effect is the inner expansion in the perturbation theory. The con-
tributions by Gregory and Wan  [5], Fan and Widera [6] are some
representative works along this line, in which the end effect was
quantitatively estimated via the concept of the decay rate. More
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recently, the decay rates concept was introduced into non-classical
materials, such as piezoelectric materials (e.g., Fan [7] and Pan et al.
[8]).

In the present study, we  consider an axial symmetric torsion
end-load effect for its simplicity in mathematics and availability
of analytical solution. Although there are other types of the decay
rates associated with other types of loadings (such as tension, bend-
ing and shear), they are the same in concept. Our main objective
here is to estimate the decay rate with consideration of the surface
effect as the surface to bulk ratio increases drastically for the nano
wires/tubes. An important parameter introduced in our derivation
is a surface/size factor, S� = �s/�b, which will be defined in details
in the following sections.

2. The decay solution

Let us consider an axial symmetric torsion problem in a circular
cylinder as shown in Fig. 1(a).

The non-zero stress and displacement components are

�r� = �r�(r, z), �z� = �z�(r, z), and u� = u�(r, z). (1)

The equilibrium, Hooke’s law and deformation equations, after
considering the axial symmetric torsion condition, are given as

∂�r�

∂r
+ ∂�z�

∂z
+ 2�r�

r
= 0 (2)

�r� = 2�εr� �z� = 2�εz� (3)

2εr� = ∂u�

∂r
− u�

r
, 2εz� = ∂u�

∂z
(4)
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Fig. 1. (a) Geometric dimension of the tube. (b) Self-equilibrium torsion load at the
end Z = 0.

where � is the shear modulus.
The boundary conditions for solving the partial differential Eqs.

(2)–(4) are given at the ends and circumferential surfaces of the
tube. The end cross sections are prescribed by a self-balanced tor-
sional loading, i.e.

∫
S0

r�z�(r, 0)dr  = 0 (5)

The stress pattern described by Eq. (5) is schematically shown
in Fig. 1(b). The circumferential surfaces of the solid are covered
by two-dimensional surface membranes which are described the
surface elasticity [2,3].

Instead of using general formulation of the bulk-surface interac-
tion, hereby, we would like to focus on our simplified geometric and
loading configuration. Referring to Fig. 2 and the condition of axial
symmetric torsion configuration, we have the equilibrium equation
for the surface membrane element as

∂
∑

z�

∂z
+ �+

r�
− �−

r�
= 0 (6)

Fig. 2. The bulk element and the membrane element.

where ˙z� is the surface stress acting on the membrane element
with a dimension of N/m. The surface membrane material obeys
the corresponding Hooke’s law∑

z�
= 2�sεz� (7)

where �s is the shear modulus of the membrane with dimension
of N/m. Also, implied in Eq. (7), we used the assumption of the dis-
placement continuity between the bulk element and the membrane
element. Thus, the strain components are the same in the bulk and
the membrane element, and are related to the displacement via Eq.
(4).

Before we  proceed to the solution of the boundary value prob-
lem defined by Eqs. (2)–(7), a set of non-dimensional equations is
needed to unveil the size and surface effect. We  introduce a set of
dimensionless coordinate and displacement as follows:

� = r

b
, � = z

b
, U�(�, �) = u�(r, z)

b
. (8)

where b is the outer radius of the wire/tube shown in Fig. 1(a).
The dimensionless coordinates ranges are given by R ≤ � ≤ 1 and
0≤ � < ∞,  where the dimensionless inner radius is R = a/b.

With these dimensionless coordinates the displacement, Eqs.
(2)–(4) are combined and rewritten as:

∂�r�

∂�
+ ∂�z�

∂�
+ 2�r�

�
= 0 (9)

�r� = �

(
∂U�

∂�
− U�

�

)
, �z� = �

∂U�

∂�
(10)

Particularly, Eqs. (6) and (7) are rewritten as:

1
b

∂˙z�

∂�
+ �+

r�
− �−

r�
= 0 (11)

˙z� = �s
∂U�

∂�
(12)

Now, we  turn our attention to the solution structure of the
boundary value problem. Referring to Fig. 1(a), we have a whole
field solution expressed in terms of an asymptotic expansion as
(e.g., Fan and Widera [6] and Fan et al. [9])

F(�, �) = F0(�, �) +
∞∑

k=1

cke−	k�Fk(�) (13)

where F0(�, �) is the so-called Saint-Venant solution, which is a non-
decay solution with respect to z. The rest terms with exponential
decay feature are of our interest. In other words, all the 	k (in an
ascending order) in the summation are positive. Particularly, the



Download English Version:

https://daneshyari.com/en/article/801555

Download Persian Version:

https://daneshyari.com/article/801555

Daneshyari.com

https://daneshyari.com/en/article/801555
https://daneshyari.com/article/801555
https://daneshyari.com

