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a  b  s  t  r  a  c  t

In  this  study  the  lattice  Boltzmann  model  (LBM)  has  been  used  to simulate  diffusion  of magnetic  nanopar-
ticles  (MNPs)  injected  at multiple  sites  inside  a biological  tissue  during  magnetic  fluid  hyperthermia
(MFH).  To  validate  the  numerical  results,  diffusion  in  infinite  one  and  two dimensional  domains  have
been  compared  with  the  analytical  solutions.  Agreement  were  excellent.  Also  diffusion  of  a  water  based
nanofluid  containing  magnetite  MNPs  (ferrofluid)  for mono  and  multi-site  injection  in the  tissue  has  been
studied.  Moreover,  the  effects  of  ferrofluid  injection  volume  as  well  as infusion  flow  rate  of ferrofluid  on
the distribution  of  MNPs  have  been  investigated.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

MFH  is one of hyperthermia modalities for tumor treatment.
In MFH, fine MNPs are localized at the tumor tissue and alter-
nating magnetic field is then applied to the target region. These
particles might act as localized heat sources. Iron oxides mag-
netite Fe3O4 and maghemite �-Fe2O3 nanoparticles are the most
studied to date (Hilger et al., 2005) due to their biocompati-
bility, when injected in the human tissue (Moroz et al., 2002).
The heat generated by the particles subjected to an external
alternating magnetic field is mainly due to the Néel relaxation
mechanism and/or Brownian motion of the particles (Hergt and
Andra, 1998; Rosensweig, 2002; Nedelcu, 2008). The superparam-
agnetic particles 10-nm are recommended in clinical application
as they are able to generate substantial heat within low mag-
netic field strength and frequency (Lv et al., 2005). An ideal
MFH treatment should selectively destroy the tumor cells with-
out damaging the surrounding healthy tissue. A successful MFH
treatment is substantially dependent on MNPs distribution in the
tissue.

Two techniques are currently used to deliver MNPs to a tumor.
The first is to deliver particles to the tumor vasculature (Matsuki
and Yanada, 1994) through its supplying artery; however, this
method is not effective for poorly perfused tumors. Furthermore,
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for a tumor with an irregular shape, inadequate MNPs distribution
may  cause under-dosage of heating in the tumor or overheating
of the normal tissue. The second approach, is to directly inject
MNPs into the extracellular space in tumors. MNPs diffuse inside
the tissue after injection of ferrofluid. If the tumor has an irregu-
lar shape, multi-site injection can be exploited to cover the entire
target region (Salloum et al., 2008a).

The relationship among MNPs distribution, infusion flow rate,
injection volume of nanofluid, and tissue structure are not well
understood. It is difficult to devise a treatment protocol that enables
the optimum distribution of temperature elevation in the tumor.
Hence, it is important to quantify the MNPs distribution and heat-
ing pattern following the injection regarding the infusion flow rate
and tissue properties (Salloum et al., 2008b).

A recent experimental study in a tissue-equivalent agarose gel,
has revealed that the particle concentration was not uniform after
the injection and were confined in the vicinity of the injection site.
Also the particle deposition was  greatly affected by the injection
rate and amount (Salloum et al., 2008a).

Due to difficulties in experimental studies, to understand the
actual spatial distribution of the MNPs after being injected into the
tumor, numerical simulations are necessary. To model this prob-
lem, LBM may  be employed, since this numerical method has been
demonstrated to be successful in simulation of fluid flow and heat
transfer problems and other types of complex physical systems (He
et al., 1998; Chen and Doolen, 1998; Succi, 2001; Ho et al., 2002;
Gupta et al., 2006; Mishra and Roy, 2007; Wang et al., 2007a,b; Joshi
et al., 2007a,b).
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LBM has many advantages over the conventional CFD meth-
ods. The advantages of the LBM include, among others, a clear
physical meaning, simple calculation, simple implementation on
a computer, ease in parallel computation, easy handling of com-
plex geometries and boundary conditions, capability of stable and
accurate simulation, etc. The LBM is second-order accurate in time
and space, which is sufficient for most engineering applications.
The LBM also shows potentials to simulate the non-linear systems
(He et al., 1998; Chen and Doolen, 1998; Succi, 2001; Velivelli and
Bryden, 2006; Shi et al., 2008; Mishra et al., 2009).

In this study the two dimensional, nine velocity (D2Q9) LBM
is used to simulate diffusion of MNPs inside a tissue as a porous
media with Neumann boundary condition, during MFH. To validate
the numerical results, diffusion in infinite one and two  dimensional
domains are compared with the analytical solutions. Also diffusion
of ferrofluid for mono and multi-site injection is studied. Finally the
effects of ferrofluid injection volume as well as infusion flow rate
of ferrofluid on the distribution of MNPs are investigated. To our
knowledge, it is the first attempt to study the MNPs distribution
inside the tissue for multi-site injection of magnetic fluid.

2. Mass diffusion in tissue

In hyperthermia treatment, the distribution of temperature ele-
vation is an important factor determining the therapeutic outcome.
The temperature distribution inside the tumor and its surrounding
healthy tissue can be computed using the Pennes bio-heat equation
as follow (Pennes, 1948):

�cp
∂T

∂t
= ∇.(k∇T) + Wb�bcpb(Tb − T) + (qm + qg) (1)

where �, cp, T, t, k, Wb, �b, cpb, Tb, qm and qg are tissue density, tissue
specific heat, tissue temperature, time, tissue thermal conductivity,
blood perfusion, blood density, blood specific heat, blood temper-
ature, uniform rate of metabolic heat generation in the tissue and
distributed volumetric heat source due to spatial heating, respec-
tively. Due to the inherent simplicity of Pennes bio-heat model, this
model was implemented in various biological research works such
as therapeutic hyperthermia for the treatment of cancer.

The quantification of heat generated by the MNPs has suggested
that the size of MNPs and properties of the magnetic field (strength
and frequency) determine its heating capacity, defined as specific
loss power (SLP). Given the SLP of the MNPs at a magnetic field
strength and MNPs concentration distribution C, the distribution
of heat generation qg can be computed as qg = SLP × C. Clearly, the
spatial distribution of the MNPs dispersed in tissue is an important
factor determining the resulting temperature elevation. However,
it is not clear how the spatial concentration of the particles in the
tissue correlates with the particle concentration in the carrier solu-
tion before the injection (Salloum et al., 2008b).

For mass transport due to diffusion for isotropic tissues, with
no blood perfusion and no interaction between cells and MNPs, the
following equation is used (Nicholson, 2001):

∂C

∂t
= D∗∇2C + S

ε
(2)

where C, D*, S, ε and t are the volume average concentration of the
species, effective diffusivity, mass source density, porosity of the
tissue and time, respectively. The effective diffusivity, however, is
related to the tortuosity of the tissue � and the diffusivity in the
absence of the porous medium, D through the following relation:

D∗ = D

�2
(3)

Fig. 1. Schematic plot of the D2Q9 lattice.

Therefore an increase in the tortuosity and a decrease in the
porosity have significant effects in reducing the effective mass dif-
fusivities of species.

3. Lattice Boltzmann model

According to Eq. (2),  the particle velocity distribution equation of
the two-dimensional nine-speed (D2Q9) lattice Boltzmann model
is (He et al., 1998):

fi(r + ei �t,  t + �t) − fi(r, t) = −1
�

[
fi(r, t) − f eq

i
(r, t)

]

+ wi �t
S

ε

� − 0.5
�

(4)

where, the distribution functions fi is a set of populations repre-
senting the probability of finding a particle at position r, at time
t, moving along the direction identified by the propagation veloc-
ity ei. The subscript i, the direction of the thermal population (see
Fig. 1), �t  the time step, � the dimensionless relaxation time. f eq

i
,

the equilibrium distribution of the evolution population is:

f eq
i

= wiC (5)

where wi is the weight factor which is equal to 4/9 for i = 1, 1/9 for
i = 2, 3, 4, 5 and 1/36 for i = 6, 7, 8, 9 and the propagation velocity is
defined as:

ei =

⎧⎪⎨
⎪⎩

0 for i = 1

(±c, 0),  (0,  ± c) for i = 2, 3, 4, 5

(±c, ±c) for i = 6, 7, 8, 9

(6)

where c = �x/�t  is the lattice velocity, �x  is the discrete lattice unit
(lu) and �t  is the time step (ts). The dimensionless relaxation time
is defined as:

�  = 3
D∗ �t

�x2
+ 1

2
(7)

The macroscopic physical quantities such as C and ṁ can be
obtained from the distribution function. The concentration and dif-
fusive mass flux are as follow (D’Orazio et al., 2004):

C =
∑

i
fi + �t

2
S

ε
(8)

ṁ = � − 0.5
�

∑
i
fiei (9)
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