
Mechanics Research Communications 38 (2011) 226–230

Contents lists available at ScienceDirect

Mechanics Research Communications

journa l homepage: www.e lsev ier .com/ locate /mechrescom

An iterative approach for nonproportionally damped systems

S. Adhikari ∗

College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK

a r t i c l e i n f o

Article history:
Received 21 July 2010
Available online 25 February 2011

Keywords:
Dynamic systems
Iterative approach
Damping
Eigenvalue problem

a b s t r a c t

Modal analysis of nonproportionally damped linear dynamic systems is considered. Dynamic response of
such systems can be expressed by a modal series in terms of complex modes. Normally state-space based
methods or approximate perturbation methods are necessary for the computation of complex modes. In
this paper, an iterative method to calculate complex modes from classical normal modes for general linear
systems is proposed. A simple numerical algorithm is developed to implement the iterative method. The
new method is illustrated using a numerical example.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The equation of motion of an n-degree-of-freedom linear vis-
cously damped system can be expressed by coupled differential
equations as

Mü(t) + Cu̇(t) + Ku(t) = f(t). (1)

Here u(t) ∈Rn is the displacement vector, f(t) ∈Rn is the forcing
vector, M, K, C ∈Rn×n are respectively the mass matrix, stiffness
and the viscous damping matrix. In general M is a positive definite
symmetric matrix, C and K are non-negative definite symmetric
matrices. The natural frequencies (ωj ∈R) and the mode shapes
(xj ∈Rn) of the corresponding undamped system can be obtained
(Meirovitch, 1997) by solving the matrix eigenvalue problem

Kxj = ω2
j Mxj, ∀j = 1, 2, . . . , n. (2)

The undamped eigenvectors satisfy an orthogonality relation-
ship over the mass and stiffness matrices, that is

xT
k Mxj = ıkj (3)

and

xT
k Kxj = ω2

j ıkj, ∀k, j = 1, 2, . . . , n (4)

where ıkj is the Kroneker delta function. We construct the modal
matrix

X = [x1, x2, . . . , xn] ∈Rn. (5)

The modal matrix can be used to diagonalize system (1) pro-
vided the damping matrix C is simultaneously diagonalizable
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with M and K. This condition, known as the proportional damp-
ing, originally introduced by Lord Rayleigh (Rayleigh, 1877) in
1877, is still in wide use today. The mathematical condition
for proportional damping can be obtained from the commuti-
tative behaviour of the system matrices (Caughey and O’Kelly,
1965). This can be expressed as CM−1K = KM−1C or equivalently
C = Mf(M−1K) as shown by Adhikari (2006). The concern of this
paper is when this condition is not met, the most likely case for
many practical applications. In particular, due to the recent devel-
opments in actively controlled structures and the increasing use of
composite and smart materials, the need to consider general non-
proportionally damped linear dynamic systems is more than ever
before.

For nonproportionally damped systems, the modal damping
matrix

C′ = XT CX (6)

is not a diagonal matrix. Such problems can be solved using a spec-
tral approach similar to the undamped or proportionally damped
system by transforming Eq. (1) into a state-space form (Meirovitch,
1997). The state-space approach is not only computationally more
expensive, it also lacks the physical insight provided by the classical
normal mode based approach. Therefore, many authors have devel-
oped approximate methods in the original space. Rayleigh (1877)
proposed a perturbation method which form the basis of many con-
temporary approximation methods (Adhikari, 1999a; ElBeheiry,
2009; Adhikari, 1999b). It is now known that either the frequency
separation between the normal modes (Hasselsman, 1976), often
known as ‘Hasselsman’s criteria’, or some form of diagonal domi-
nance (Shahruz and Ma, 1988; Morzfeld et al., 2009; Adhikari, 2004;
Morzfeld et al., 2008) in the modal damping matrix C′ is sufficient
for neglecting modal coupling. In a recent work, Udwadia (2009)
proved that for systems with non-repeated eigenvalues, the best
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approximation of a diagonal modal damping matrix is simply to
consider the diagonal of the C′ matrix.

The eigenvalue problem corresponding to system (1) can be
expressed as

[s2
j M + sjC + K]uj = 0, ∀j = 1, 2, . . . , 2n (7)

where sj∈C are the eigenvalues and uj∈Cn are the eigenvectors.
Comprehensive details on this type of quadratic eigenvalue prob-
lem can be found in Tisseur and Meerbergen (2001). Since M, K and
C are all real matrices, the eigensolutions are either real or they
appear in the complex conjugate pairs. In this paper we consider
complex conjugate eigensolutions only as for stable systems such
eigenvalues are of great practical importance. Using the eigensolu-
tions, the frequency response function (FRF) can be obtained (see
for example (Adhikari, 1999a; Tisseur and Meerbergen, 2001)) as

H(iω) =
n∑

j=1

[
�jujuT

j

iω − sj
+

�∗
j
u∗

j
u∗T

j

iω − s∗
j

]
where

�j = 1
uT

j
[2sjM + C]uj

. (8)

Here (•)* denotes complex conjugation and (•)T denotes matrix
transposition. This equation shows that if the complex eigensolu-
tions sj and uj can be obtained efficiently, the dynamic response can
be obtained exactly using Eq. (8). In this paper an iterative approach
is developed to obtain the complex eigensolutions of nonpropor-
tionally damped systems from the undamped eigensolutions.

2. Iterative approach for the eigensolutions

Ibrahimbegovic and Wilson (1989) have developed a procedure
for analyzing non-proportionally damped systems using a subspace
with a vector basis generated from the mass and stiffness matrices.
Their approach avoids the use of complex eigensolutions. In the
time domain, an iterative approach for solving the coupled equa-
tions was developed by Udwadia and Esfandiari (1990) based on
updating the forcing term appropriately. In the method proposed
here, we obtain the complex modes and complex frequencies in an
iterative manner.

For distinct undamped eigenvalues (ω2
l
), xl, ∀l = 1, . . . ,n, form a

complete set of vectors. For this reason, uj can be expanded as a
complex linear combination of xl. Thus, an expansion of the form

uj =
n∑

l=1

˛(j)
l

xl (9)

may be considered. Without any loss of generality, we can
assume that ˛(j)

j
= 1 (normalization) which leaves us to determine

˛(j)
l

, ∀l /= j. Substituting the expansion of uj into the eigenvalue
equation (7), one obtains the approximation error for the j-th mode
as

εj =
n∑

l=1

s2
j ˛(j)

l
Mxl + sj˛

(j)
l

Cxl + ˛(j)
l

Kxl. (10)

We use a Galerkin approach to minimize this error by view-
ing the expansion (9) as a projection in the basis functions
xl ∈Rn, ∀l = 1, 2, . . . , n. Therefore, we make the error orthogonal
to the basis functions, that is

εj ⊥ xl or xT
k εj = 0, ∀k = 1, 2, . . . , n. (11)

Using the orthogonality property of the undamped eigenvectors
described by (3) and (4) one obtains

s2
j ˛(j)

k
+ sj

n∑
l=1

˛(j)
l

C ′
kl + ω2

k ˛(j)
k

= 0, ∀k = 1, . . . , n (12)

where C ′
kl

= xT
k
Cxl are the elements of the modal damping matrix C′

defined in Eq. (6). The j-th equation of this set obtained by setting
k = j can be written as

(s2
j + sjC

′
jj + ω2

j )˛(j)
j

+ sj

n∑
l /= j

˛(j)
l

C ′
jl = 0. (13)

Recalling that ˛(j)
j

= 1 and C′ is a symmetric matrix, this equation
can be rewritten as

s2
j + sj

⎛
⎝C ′

jj +
n∑

l /= j

˛(j)
l

C ′
lj

⎞
⎠

︸ ︷︷ ︸
�j

+ ω2
j = 0 (14)

where

�j = C ′
jj + bT

j aj (15)

bj = {C ′
1j, C ′

2j, . . . , {j-th term deleted}, . . . , C ′
nj}

T ∈R(n−1) (16)

and

aj = {˛(j)
1 , ˛(j)

2 , . . . , {j-th term deleted}, . . . , ˛(j)
n }T ∈C(n−1) (17)

The vector aj is unknown and can be obtained by excluding the
j = k case in Eq. (12). Excluding this case one has

s2
j ˛(j)

k
+ sj

⎛
⎝C ′

kj + ˛(j)
k

C ′
kk +

n∑
l /= k /= j

˛(j)
l

C ′
kl

⎞
⎠ + ω2

k ˛(j)
k

= 0, or

(s2
j + ω2

k+C ′
kk)˛(j)

k
+sj

n∑
l /= k /= j

C ′
kl˛

(j)
l

= − sjC
′
kj, ∀k = 1, . . . , n; /= j.

(18)

These equations can be combined into a matrix form as

[Pj − Qj]aj = bj. (19)

In the above equation, the vectors aj and bj have been defined
before. The matrices Pj and Qj are defined as

Pj = diag

[
s2

j
+ sjC

′
11 + ω2

1

−sj
, . . . , {j-th term deleted}, . . . ,

×
s2

j
+ sjC

′
NN + ω2

n

−sj

]
∈C(n−1)×(n−1), (20)

and

Qj =

⎡
⎢⎢⎢⎢⎢⎣

0 C ′
12 . . . {j-th term deleted} . . . C ′

1n

C ′
21 0

.

.

.
.
.
.

.

.

. C ′
2n

.

.

.
.
.
.

.

.

. {j-th term deleted}
.
.
.

.
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.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
C ′

n1 C ′
n2 . . . {j-th term deleted} . . . 0

⎤
⎥⎥⎥⎥⎥⎦ ∈R(n−1)×(n−1). (21)

From Eq. (19), aj should be obtained by solving the set of linear
equations. Because Pj is a diagonal matrix, one way to do this is
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