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a b s t r a c t

Boussinesq equation arises in shallow water flows and in elasticity of rods and shells. It contains non-
linearity and fourth-order dispersion and has been one of the main soliton models in 1D. To find its 2D
solutions, a perturbation series with respect to the small parameter ε = c2 is developed in the present
work, where c is the phase speed of the localized wave. Within the order O(ε2) = O(c4), a hierarchy is
derived consisting of one-dimensional fourth-order equations. The Bessel operators involved are refor-
mulated to facilitate the creation of difference schemes for the ODEs from the hierarchy. The numerical
scheme uses a special approximation for the behavioral condition in the singularity point (the origin). The
results of this work show that at infinity the stationary 2D wave shape decays algebraically, rather than
exponentially as in the 1D cases. The new result can be instrumental for understanding the interaction of
2D Boussinesq solitons, and for creating more efficient numerical algorithms explicitly acknowledging
the asymptotic behavior of the solution.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Boussinesq’s equation (BE) was the first model for the propaga-
tion of surface waves over shallow inviscid fluid layer. Boussinesq
(1871, 1872) developed a perturbation method to solve the Laplace
equation in the bulk, and to consequently close the system that
contains only the surface variable. He arrived at a generalized wave
equation (GWE) that contains dispersion in addition to the standard
terms. For a slowly evolving wave in a coordinate frame moving
with the center of the wave, BE reduces to the Korteweg–de Vries
equation which is widely studied in 1D. The approach developed
by Boussinesq opened a new avenue of modeling: the ‘amplitude
equations’. He found an analytical solution of his equation and thus
proved that the balance between the steepening effect of the non-
linearity and the flattening effect of the dispersion maintains the
shape of the wave. This discovery can be properly termed ‘Boussi-
nesq paradigm’.

Apart from the significance for the shallow water flows, this
paradigm is very important for understanding the particle-like
behavior of nonlinear localized waves. In the 1960s it was discov-
ered that the permanent waves can behave in many instances as
particles (the so-called ‘collision property’), and were called soli-
tons by Zabusky and Kruskal (1965). The localized waves which can
retain their identity during interaction appear to be a rather perti-
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nent model for particles, especially if some mechanical properties
(such as mass, energy, and momentum) are conserved by the gov-
erning system of equations. In 1D, a plethora of deep mathematical
results have been obtained for solitons (see Ablowitz and Segur,
1981; Newell, 1985). The success was contingent upon the exis-
tence of an analytical solution of the respective nonlinear dispersive
equation. As it should have been expected, most of the physical
systems are not fully integrable (even in one spatial dimension)
and only a numerical approach can lead to unearthing the perti-
nent physical mechanisms of the interactions (see, e.g., Christov
and Velarde, 1994; Christov, 2001 and the literature cited therein).

The overwhelming majority of the analytical and numerical
results obtained so far are for one spatial dimension, while in multi-
dimension, much less is possible to achieve analytically, and almost
nothing is known about the unsteady solutions that involve inter-
actions, especially when the full-fledged Boussinesq equations are
involved. The 2D case is relatively better studied for the so-called
Kadomtsev–Petviashvili equation (KPE), which has fourth deriva-
tives only in one of the spatial directions, while it is second-order
in the other direction. Interesting analytical results are obtained for
the solutions of KPE, which are localized in the direction with the
fourth-order derivative, and are periodic in the other direction (see,
e.g., Christov et al., 2007; Porubov et al., 2004,? and the literature
cited therein).

For the time being, the 2D Boussinesq model is still less accessi-
ble analytically, which requires developing numerical techniques.
The first case to undergo investigation is the steadily propagating
wave profile. Some preliminary numerical results were obtained
by Choudhury and Christov (2005). One of the main difficulties for
the difference schemes lies in the inevitable reducing of the infinite
interval to a finite one. This can be surmounted if a spectral method
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is used with a basis system of localized functions which automat-
ically acknowledge the requirement that the solution belongs to
L2( − ∞ , ∞ ) space. Along these lines, a specialized Galerkin spectral
technique was propsed in Christov (1982), and applied to various
1D problems. Christov (1995b) created a spectral scheme for a 2D
problem related to the quadratic Klein–Gordon equation (KGE).
The application of the Galerkin procedure to Boussinesq model can
be found in Christou and Christov (2007, 2009) for the stationary
propagating 2D Boussinesq wave.

In the present work, we undertake an asymptotic semi-
analytical solution for moderate phase speeds and compare the
results with the above mentioned numerical works.

2. Boussinesq paradigm equation (BPE)

Following Boussinesq (1872), we restrict the derivations to the
case when the shape function h(x, y, t) of the free surface is single-
valued, i.e., there is no wave breaking. The motion in the bulk is
governed by the Laplace equation for the potential �. We introduce
dimensionless variables according to the scheme ˚ = UL�, h = H�,
z = Hz′, x = Lx′, y = Ly′, t = LU−1t′, where H is the scale for the vertical
spatial coordinate (the thickness of the shallow layer) and L is the
wave length in the horizontal plane. Respectively, U =

√
gH is the

characteristic scale for the velocity. Henceforth, the primes will be
omitted.

As shown in Christov (2001), the consistent implementation
of the Boussinesq method yields the following generalized wave
equation (GWE) for f = �(x, y, 0;t):

ftt+2ˇ∇f · ∇ft+ˇft�f +3ˇ2

2
(∇f )2�f − �f + ˇ

6
�2f − ˇ

2
∂2�f

∂t2
= 0.

(1)

Eq. (1) is the most rigorous amplitude equation that can be derived
for the surface waves over an inviscid shallow layer, when the
length of the wave is considered large in comparison with the
depth of the layer. Since it was derived only in 2001, it has not
attracted much attention, and the plethora of different inconsis-
tent Boussinesq equations are still vigorously investigated. Each
specific simplification of the general model reveals some particu-
lar trait of the balance between the nonlinearity and dispersion. In
many cases, the resulting model that is integrable (see the original
Boussinesq equation containing only fourth-order spatial deriva-
tives for the dispersion). Such a feature is clearly important for
advancing the specific soliton techniques. Much has been done to
compare the behavior of the solutions of the different versions of
Boussinesq equations. For instance, it was shown numerically in
Christov and Velarde (1994) that the soliton interactions are qual-
itatively very similar for the non-integrable equation with mixed
fourth derivative and the original integrable Boussinesq equation.
This means that some aspects of the actual physics can be captured
successfully by a specific version of the Boussinesq equation. The
most popular are the versions that contain a quadratic nonlinearity,
and we feature the new technique proposed here for this case.

Unfortunately, Boussinesq did some additional (and as it turns
out) unnecessary assumptions, which rendered his equation incor-
rect in the sense of Hadamard. We term the original model the
‘Boussinesq’s Boussinesq equation’ or BBE. During the years, it
was ‘improved’ in a number of works. An overview of the differ-
ent Boussinesq equations can be found in Christov and Velarde
(1994), and the literature cited therein. The mere change of the
incorrect sign of the fourth derivative in BBE yields the so-called
‘good’ or ‘proper’ Boussinesq equation, which we will refer to as
the Boussinesq equation or BE. A different approach to remov-
ing the incorrectness of the BBE was discussed in Benjamin et
al. (1972); Bogolubsky (1977); Manoranjan et al. (1988), and the

situation was remedied by changing the spatial fourth deriva-
tive to a mixed fourth derivative, which resulted into an equation
know nowadays as the regularized long wave equation (RLWE)
or Benjamin–Bona–Mahony equation (BBME). In fact, the mixed
derivative occurs naturally in Boussinesq derivation (see Eq. (1)),
and was changed by Boussinesq to a fourth spatial derivative under
an assumption that ∂t ≈ c ∂ x, which is currently known as the ‘linear
impedance relation’ (or LIA). The LIA has gained quite a currency in
different fields of fluid mechanics and has produced innumerable
instances of unphysical results (see Christov et al., 2007 for the case
in nonlinear acoustics).

Boussinesq applied the LIA also to the nonlinear terms, and
neglected the cubic nonlinearity. This simplified the nonlinear
terms of Eq. (1) to a point where Boussinesq was able to find the
first sech solution for the permanent localized wave, proving thus
the existence of the balance between the nonlinearity and disper-
sion. The actual nonlinearity is important because it provides for
the Galilean invariance of the model (see Christov, 2001). Yet for
the purposes of understanding the 2D solutions, one may find it
useful to stay within the Boussinesq framework of simplifications,
as far as the nonlinear terms are concerned. We focus here on the
following two-dimensional amplitude equation:

wtt = �
[
w − ˛w2 + ˇ1wtt − ˇ2�w

]
, (2)

where w is the surface elevation, ˇ1, ˇ2 > 0 are two dispersion coef-
ficients, and ˛ is an amplitude parameter, which can be set equal
to unity without loosing the generality. We term Eq. (2) the Boussi-
nesq paradigm equation (or BPE). As already above mentioned, the
main difference here is that BPE features one more term than BE,
namely ˇ1 /= 0. A note on the notation: in the original BE as related
to the water waves, the nonlinear term has a positive sign, and the
soltions are actually depressions for the subcritical case. Here we
have deliberately changed the sign for the sake of the presentation.

It was shown in Christov (1995a, 2001) that the 1D PBE admits
soliton solutions given by

ws(x, t; c) = − 3
2˛

(c2 − 1)×sech2
[

1
2

(x−ct)
√

(c2−1)/(ˇ1c2−ˇ2)
]

,

(3)

where c is the phase speed. The soliton Eq. (3) is that it exists for
|c| > max{1,

√
ˇ2/ˇ1} or |c| < min{1,

√
ˇ2/ˇ1}. The first case is

comprised by the so-called ‘supercritical’ solitons, while the latter
encompasses the ‘subritical’ ones.

We set the amplitude parameter ˛ = 1, because it can always be
eliminated by rescaling the solution. We can also select ˇ2 = 1. This
leaves us with only one parameter, ˇ1, apart from the phase speed
c.

For the numerical interaction of 2D Boussinesq solitons, one
needs the shape of a stationary moving solitary wave in order to
construct an initial condition. To this end, introduce relative coor-
dinates x̂ = x − c1t, ŷ = y − c2t, in a frame moving with velocity (c1,
c2). Since there is no evolution in the moving frame v(x, y, t) =
u(x̂, ŷ), and the following equation holds for u:

(c2
1ux̂x̂ + 2c1c2ux̂ŷ + c2

2uŷŷ) = (ux̂x̂ + uŷŷ) −
[
((u2)x̂x̂ + (u2)ŷŷ)

]
− (ux̂x̂x̂x̂ + 2ux̂x̂ŷŷ + uŷŷŷŷ)

+ ˇ1
[
c2

1(ux̂x̂x̂x̂ + ux̂x̂ŷŷ)

+2c1c2(ux̂x̂x̂ŷ + ux̂ŷŷŷ)

+c2
2(ux̂x̂ŷŷ + uŷŷŷŷ)

]
. (4)

The so-called asymptotic boundary conditions (a.b.c.) read u →
0, for x̂ → ±∞, ŷ → ±∞. The a.b.c.’s are invariant under rotation
of the coordinate system, hence it is enough to consider solitary
propagating along one of the coordinate axes, only. We chose c1 = 0,
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