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1. Introduction

There are robotic applications that lend themselves well to the usage of less conventional approaches in robot design, specifically,
where the finite pose of the end-effector may be of interest as opposed to the instantaneous one. Finite pose/degrees of freedom
(DOFs) are the minimum number of geometric parameters required to uniquely identify the pose of a rigid body in space, i.e. three
for planar and six for spatial cases, whereas instantaneous DOFs are those of a rigid body whose velocities and accelerations could
be controlled [1]. For fully actuated parallel kinematic manipulators (PKMs), such as the Gough-Stewart [2,3] family of PKMs, the in-
dependent finite and the instantaneous DOFs are the same. However, if the system is under-actuated,' one could have more indepen-
dent finite DOFs than instantaneous ones. The finite and instantaneous mobilities of the manipulator could then be defined by the
achievable independent DOFs in either case.

Some examples of less conventional approaches to realize this type of under-actuation can be found in [4], in which the authors
used locks to remove the DOFs associated with certain passive joints in order to under-actuate a serial robot, or in [5], in which the
authors used a guiding rack with a specific motion sequence to obtain full finite mobility with one actuator for a parallel robot. For
the most part, the added efficiency in such cases comes at the cost of more complex control and motion planning algorithms, as
well as topological constraints to accommodate the under-actuation.

Similarly, the authors in [6] introduced a novel family of reconfigurable robots that can modify their topology to alter their stiffness
and static characteristics. These robots, referred to as parallel robot(s) with enhanced stiffness (PRES), have applications in the aero-
space field [7].

After a brief introduction of PRES’s (Section 2), their modular design will be investigated (Section 3). Thereafter, the results will be
discussed (Section 4), and a case study will be presented (Section 5). The results will clearly identify the architecture requirements for
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Nomenclature

C branch connectivity

d Cartesian motion parameter

F external load vector

f internal load vector

f joint force/torque

] Jacobian matrix

K stiffness matrix

k limb stiffness

M mobility

N summation scalar

N, number of links

N; number of joints

r degree of static redundancy

A number of links per limb

b; degrees of relative motion permitted by joint i
Subscripts

A related to an actuated limb/member
C related to the Cartesian space
hyp related to the hyperstatic state
I/iso related to the isostatic state

] related to a joint or the joint space

l related to the locked state

P related to a passive limb/member

R related to the redundant portion of the system
u related to the unlocked state

Superscripts

A related to an actuated joint/member

hyp related to the hyperstatic state

iso related to the isostatic state

PL related to a lockable passive joint/member
PR related to a regular passive joint/member

achieving a modular design. The case study will demonstrate the implementation of the modular design for a wing morphing
application.

2. Parallel robots with enhanced stiffness (PRES)

The family of robots presented in [6] enjoys enhanced stiffness and static characteristics without actuation redundancy. These ro-
bots have the ability to alter their topology using a series of lockable passive joints. This allows the PRES to achieve an array of isostatic
topologies, used for under-actuation, and one primary hyperstatic topology, used for enhanced stiffness and static characteristics. A
robot or a configuration with a hyperstatic topology is one that is statically and kinematically indeterminate, or in other words, it is
redundantly rigid, whereas an isostatic topology is one that is both statically and kinematically determinate, or in other words, it is
minimally rigid. Static redundancy occurs when a mechanism or a structure becomes hyperstatic. The degree of static redundancy
in the hyperstatic state is equal to the number of locked DOFs associated with the passive joints that would have to be unlocked to
turn the system into an isostatic one. The degree of static redundancy in the hyperstatic state, r, can be expressed as

r= (N} +Nj")—d M

where NJ* and N# are the total number of lockable passive and actuated joints, respectively; d is the system order, with a value of three
in R?, and six in R. Eq. (1) is expressed with the underlying assumption that the actuation or locking action is applied to one non-
redundant DOF of the joint, regardless of the number of DOFs of the joint itself. The degree of static redundancy can vary depending
on the application. However, it is always equal to or greater than one in the hyperstatic state. It should be noted that Eq. (1) is only
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