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We develop analytical approaches and analyze their range of applicability to oscillators with two
nonlinear springs in parallel and series connections. Specifically, we focus our study on systems
with hardening springs and cubic nonlinearities. In both cases, three dimensionless parameters
govern the oscillator namely λ= k2/k1 and ϵ1,2 = ε1,2A2. Here, k1,2 and ε1,2 are the linear stiffness
and the nonlinearity coefficient of both springs, respectively, and A is the amplitude of the position
of themass, in the parallel case, or the deflection of the spring connected to themass (k2, ε2), in the
series case. It is found that, in parallel configuration, forλ N 0 and 0 b ϵ1,2 ≤ 1 the analytical solution
gives an excellent approach to the exact solution found numerically. However, in series
connection the numerical simulations show that the solution of the oscillator becomes much
more complex than in parallel connection, and the analytical approaches work excellently in
the ranges 0 b λ ≤ 1, 0 b ϵ1,2 ≤ 0.1, and, 0 b λ ≤ 0.1, 0 b ϵ1,2 ≤ 1.
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1. Introduction

The problemof nonlinear oscillators occurs inmany real systems frommacro to nano length scales. Therefore, nonlinear oscillators
appear in many fields of science as mathematics, physics, mechanics, electronics, chemistry, biology, astronomy, etc. Usually, the
mathematical model of a nonlinear oscillator is a strong nonlinear second order differential equation. Such nonlinear equation is
very difficult to be solved especially with analytical methods [1–5].

Many effective analytical methods have been suggested to solve basic oscillators with one nonlinear spring, such as the variational
method [6–8], homotopy perturbation method [9–13], parameter expansion method [14,15], energy balance method [16–19],
harmonic balance method [20–22] or the Hamiltonian method developed by He [23–26], among others. Regarding combined
oscillators with linear and nonlinear stiffness in series, Telli and Kopmaz [27] showed that the motion of a mass grounded via linear
and nonlinear springs in series leads to a set of differential algebraic equations. They demonstrated that introducing a suitable variable
representing the deflection of nonlinear spring, one can obtain a nonlinear ordinary differential equation which can be solved using
the Lindstedt method [28,29] and the harmonic balance method. Lai and Lim [30] extended the perturbation and harmonic methods
for a nonlinear system combining linear and nonlinear springs in series. The governing equation was linearized and associated with
the harmonic balancemethod to establish new and accurate higher-order analytical approximate solutions. Using homotopy analysis
method and homotopy Padé technique to accelerate the convergence rate of the series solution, Hoseini et al. [31] analyzed nonlinear
free vibration of conservative oscillators with inertia and static type cubic nonlinearities. Barforoushi et al. [32] applied also the
homotopy perturbation method for solving nonlinear free vibration of systems with serial linear and nonlinear stiffness. They
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found that this method is suitable for this kind of oscillator although they showed the limitations of suchmethod for higher degree of
freedom systems. Recently, the approximate value of the equivalent rigidity for linear and nonlinear springs in series was obtained by
Bayat et al. [33], applying the averaging procedure [34].Moreover, they showed that the approximate value of the equivalent frequen-
cy of vibration of the oscillator corresponds to the value which is obtained with the Hamiltonian approach.

In order to validate the analytical approaches commented above, the numerical solutions of the nonlinear oscillators are also
necessary. One of the most efficient methods to integrate numerically strong nonlinear second order differential equations is the
fourth-order Runge–Kutta method [19,35–37]. However, there are alternative methods even more accurate for solving numerically
such equations. Razzaghi and Elnagar [38] used the pseudo spectral method to find the numerical solution of a Duffing oscillator.
Arikoglu and Ozkol [39] resolved numerically different nonlinear integro-differential equations using the differential transform
method (DTM). They shown that theDTMmethod is a very fast convergence, precise and cost efficient tool for solving these nonlinear
equations. Using the Laplace transform and the Padé approximations, Momani and Ertürk [40] proposed a new method to capture
with accuracy the frequency of the response of nonlinear oscillators.

Although the numericalmethods can be very accurate tools to findnonlinear solutions, they have the drawback to be valid only for
certain numerical parameters. Thus, the numerical results are applicable for solving different technical problems, quantitatively, al-
though they are not enough for a deep qualitative analysis of the problem. Because of this limitation, we need the analytical approach
to the solution of the nonlinear problem, which must be suitable for discussion.

Therefore, themain objective of the present work is to extend the application of the averaging procedure, based on the equivalent
rigidity, to find analytical approaches to oscillators with two nonlinear springs in both parallel and series connections. Furthermore, it
is also proposed a suitable dimensionless analysis to identify easily the application ranges of the analytical approaches found. This
paper beginswith the deduction of the analytical approaches to oscillators with nonlinear springs in parallel and series, which are de-
veloped in Sections 2 and 3, respectively. The comparisons of the analytical approaches with numerical solutions, as well as their
ranges of applicability, are given in Section 3. The main conclusions and suggestions for future work are outlined in Section 4,
while the numerical aspects are detailed in Appendix A.

2. Analytical approach to an oscillator with nonlinear springs in a parallel configuration

A nonlinear spring has a nonlinear relationship between force and displacement. In the current work, we consider hardening
springs with a nonlinear stiffness

k yð Þ ¼ k0 1þ εy2
� �

; ð1Þ

where y is the net deflection of the nonlinear spring, k0 is the constant stiffness, and ε is the nonlinearity coefficient. This kind of non-
linear springs appears in the so-called Duffing equation which has been widely studied [23,41]. The case ε N 0 corresponds to a hard-
ening spring while ε b 0 indicates a softening one, see Fig. 1.

Therefore, the restoring force of the nonlinear spring is

F yð Þ ¼ −k yð Þy ¼ −k0 yþ εy3
� �

; ð2Þ

which has a linear contribution− k0y and a nonlinear one− k0εy3.

Fig. 1. Dimensionless nonlinear stiffness for different values of ε.
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