Author's Accepted Manuscript Acicular porous mullite from diatom frustules Lei Dong, Chao Zhang, Yongjun Chen, Lihua Cao, Jianbao Li, Lijie Luo PII: S0167-577X(16)30188-4 DOI: http://dx.doi.org/10.1016/j.matlet.2016.02.023 MLBLUE20302 Reference: To appear in: Materials Letters Received date: 19 October 2015 Revised date: 1 February 2016 Accepted date: 6 February 2016 Cite this article as: Lei Dong, Chao Zhang, Yongjun Chen, Lihua Cao, Jianbac Li and Lijie Luo, Acicular porous mullite from diatom frustules, Material Letters, http://dx.doi.org/10.1016/j.matlet.2016.02.023 This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain ACCEPTED MANUSCRIPT Acicular porous mullite from diatom frustules Lei Dong, Chao Zhang, Yongjun Chen*, Lihua Cao, Jianbao Li, Lijie Luo Key Lab of Advanced Materials of Tropical Island Resources, Ministry of Education; College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China *The corresponding author Email: yjchen1970@sina.com (Y. J. Chen) Abstract We report for the first time using diatom frustules, the porous silica shells of diatoms, as Si precursor for synthesis of porous mullite ceramics with fibrous pore morphology. The porous mullite ceramics prepared by mould pressing method without using any porogen and binder showed high open porosity (up to 60%) due to the highly porous nature of diatom frustules and near zero sintering shrinkage of mullite whiskers. The original circular pores of diatom frustules were turned into fibrous pores of mullite ceramics. The porous ceramics showed flexural strength of 38.6 MPa at the porosity of 55.5% when sintered at 1600 °C for 3 hours. Keywords: Porous materials; Ceramics; Diatom frustules 1. Introduction Porous ceramics are in demand for a broad range of functional and structural applications, such as filtration, catalyst support, absorption, refractory insulation, and bio-scaffold for tissue engineering [1–4]. Porous ceramics with fibrous pore structure formed by inter-knocked ceramic whiskers are thought to feature high flux as well as good mechanical properties [5]. Extensive attentions related to the fibrous pore ceramics have been paid to porous slicon nitride as β-Si₃N₄ features elongated grains. However, the high cost of production (non oxidizing atmosphere and extremely high sintering 1 ## Download English Version: ## https://daneshyari.com/en/article/8017253 Download Persian Version: https://daneshyari.com/article/8017253 <u>Daneshyari.com</u>