Author's Accepted Manuscript

Facile One-step Synthesis of Uniformity Carbonmixed Tin Sulfide Hexagonal Nanodisks as Lowcost Counter Electrode Material for Dye-sensitized Solar Cells

Haifeng Xu, Guang Zhu

ww.elsevier.com

PII: S0167-577X(16)30193-8

DOI: http://dx.doi.org/10.1016/j.matlet.2016.02.032

Reference: MLBLUE20311

To appear in: Materials Letters

Received date: 2 December 2015 Revised date: 25 January 2016 Accepted date: 8 February 2016

Cite this article as: Haifeng Xu and Guang Zhu, Facile One-step Synthesis o Uniformity Carbon-mixed Tin Sulfide Hexagonal Nanodisks as Low-cos Counter Electrode Material for Dye-sensitized Solar Cells, Materials Letters http://dx.doi.org/10.1016/j.matlet.2016.02.032

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Facile One-step Synthesis of Uniformity Carbon-mixed Tin Sulfide Hexagonal Nanodisks as Low-cost Counter Electrode Material for Dye-sensitized Solar Cells

Haifeng Xu^{1,*}, Guang Zhu^{1,2,*}

Abstract:

Carbon-mixedtin sulfide hexagonal nanodisks were synthesized via a simple and environmentally friendly one-step hydrothermal route. To verify whether the introduction of carbon can improve the performance of the materials, the as-synthesized SnS_2 and carbon-mixed SnS_2 are fabricated as counter electrodes in dye-sensitized solar cells. Although the existence of the amorphous carbon reduces the short circuit current, the mixed structure may protect the active tin sulfide from corrosion by electrolyte. Compared with pristine tin sulfide hexagonal nanodisks, carbon-mixed tin sulfide hexagonal nanodisks exploited as CEs have also exhibited distinguished electrocatalytic activity for the reduction of triiodide and excellent chemical stability due to the introduction of carbon. The DSSC equipped with carbon-mixed tin sulfide hexagonal nanodisks counter electrode exhibited an excellent power conversion efficiency of 7.06%, which increasing value reached 15.3% comparable to that of the tin sulfide hexagonal nanodisks based DSSC (6.12%). This was also comparable to that of the Pt-based DSSC (7.09%).

Keywords: Electrical properties; Semiconductors; Solar energy materials.

1. Introduction

_

¹ School of Mechanical and Electronic Engineering, Suzhou University, Suzhou, 234000, P. R. China;

² Anhui Key Laboratory of Spin Electron and Nanomaterials, Suzhou University, Suzhou 234000, P. R. China;

Corresponding author: Prof. H. F. Xu, Tel.: +86 18855770020; E-mail address: xuhaifeng@ahsztc.edu.cn;

^{*} Corresponding author. Prof. G. Zhu, Tel.: +86 557 3681973; E-mail address: guangzhu@ahsztc.edu.cn

Download English Version:

https://daneshyari.com/en/article/8017298

Download Persian Version:

https://daneshyari.com/article/8017298

<u>Daneshyari.com</u>