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a b s t r a c t

In this note we present exact solutions of two initial-boundary value problems (IBVP)s in
the setting of a recently-introduced theory of heat conduction, wherein the two tempera-
ture theory of the late 1960s is merged with Tzou’s dual-phase-lag flux relation. First, we
solve a one-dimensional problem on a finite interval for a simple, parabolic initial condi-
tion. We then describe how to extend the analysis to the general three-dimensional case.
In particular, it is demonstrated that the instability which generally arises in connection
with the dual-phase-lag model can be avoided under this hybrid formulation.

Published by Elsevier Ltd.

1. Introduction

As Maxwell (2001) appears to have been the first to point out, the classical linear theory of heat conduction, which is
based on Fourier’s law for the thermal flux, predicts that a thermal disturbance at some point in a material body will be felt
instantly, but unequally, at all other points of the body, however distant. This behavior, which is often referred to as the
‘‘paradox of heat conduction” (Dreyer and Struchtrup, 1993), is physically unrealistic since it implies that thermal signals
propagate with infinite speed. It is therefore not surprising, given this non-causal aspect of the classical theory, that numer-
ous alternative theories of heat conduction have been put forth since Maxwell first made his observation in the latter half of
the 19th century (see, e.g., Bargmann and Steinmann, 2008; Caviglia et al., 1992; Chandrasekharaiah, 1986;
Chandrasekharaiah, 1998; Christov, 2009; Dreyer and Struchtrup, 1993; Hetnarski and Ignaczak, 2000; Ignaczak and Osto-
ja-Starzewski, 2009; Ostoja-Starzewski, 2009; Reverberi et al., 2008 and the references therein).

One of these modern theories, the so-called dual-phase-lag model, was proposed by Tzou (1995) (see also Tzou, 1997).
Under this theory, Fourier’s law is replaced with

qðx; t þ s1Þ ¼ �KrTðx; t þ s2Þ; ð1Þ

where q is the heat flux vector, T is the absolute temperature, and the constant Kð> 0Þ denotes the thermal conductivity. In
addition, the time delay constants s1 and s2, where in the present note s1 > s2 P 0 will be assumed, are associated with the
microstructure of the material under consideration. The dual-phase-lag model, which reduces to Fourier’s law in the limit
s1 � s2 ! 0, describes a process in which a temperature gradient that is established across a material volume at time
t þ s2 will not give rise to a thermal flux at a point x within that volume until the later time t þ s1. For more on the dual-
phase-lag model, see Antaki (2000), Chandrasekharaiah (1998), Horgan and Quintanilla (2005), Jou and Criado-Sancho
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(1998), Quintanilla (2002), Quintanilla (2003), Quintanilla and Racke (2006a), Quintanilla and Racke (2007), Shen and Zhang
(2008), and the references therein.

Unfortunately, when combined with the conservation of energy law from classical heat conduction theory, namely,

q _eðx; tÞ þ r � qðx; tÞ ¼ 0; ð2Þ

assuming a rigid thermal conductor and that no heat sources/sinks are present, Eq. (1) gives rise to a heat transport equation
that, in general, exhibits instability with respect to the initial data. (In Eq. (2), _e ¼ cp

_T , where e denotes the specific internal
energy and the specific heat at constant pressure cpð> 0Þ is assumed constant; q is the (constant) mass density; and a super-
posed dot denotes @=@t.) To be more specific, it can be proved that there exists a sequence of eigenvalues such that their real
parts tend to infinity, meaning that Tzou’s model is highly explosive Jordan et al., 2008. Thus, simply substituting the dual-
phase-lag model in place of Fourier’s law results in a theory that is arguably less realistic than the classical (i.e., Fourier-
based) version!

In the late 1960s, Chen and Gurtin (1968) and Chen et al. (1968, 1969) formulated what soon became known as the two
temperature theory (2TT). This theory proposes that heat conduction in a material body depends upon two distinct temper-
atures, the conductive temperature U and the thermodynamic temperature H (Warren and Chen, 1973). While, under cer-
tain conditions, these two temperature can be equal, in time-dependent problems, however, in particular those involving
wave propagation, U and H are generally different (Warren and Chen, 1973). The key element that sets the 2TT apart from
the classical theory is the material parameter að> 0Þ. Specifically, in the limit as a! 0, U! H and the classical theory is
recovered.

Although interest in the 2TT has waned since the 1970s, the recent contributions of Quintanilla (2004a,b) and Puri and
Jordan (2006) has signaled something of a reversal in this trend. In particular, Quintanilla (2008) has proposed a modification
of the 2TT that is based on replacing

qðx; tÞ ¼ �KrUðx; tÞ: ð3Þ

which is the constitutive equation for the heat flux vector under the 2TT, with

qðx; t þ s1Þ ¼ �KrUðx; t þ s2Þ; ð4Þ

which is just Eq. (1) with the conductive temperature U taking the place of T. The significance of Quintanilla’s modification of
the 2TT is that it yields a theory of heat conduction that includes time delay, but that does not suffer from the ill-posedness
problem described by Jordan et al. (2008).

We believe that, whenever possible, one should study mathematical models in their exact form. We also believe that
mathematical analysis plays a crucial role in ascertaining the validity of theoretical models, such as the one proposed by
Quintanilla (2008), by uncovering bounds on the material parameters, and possibly even experimentally testable predic-
tions. Thus, our investigation has been based on the exact, one-dimensional (1D) version of Eq. (1) – not, as is the case with
almost all of the earlier works on this topic, its Taylor series approximation. What’s more, the major findings presented here
were obtained using only the methods of classical analysis; numerically-generated graphs have been included primarily to
clarify the former.

Now, the present communication is organized as follows. In Section 2, we state the basic equations of the new theory. In
Section 3, we solve a particular, well known, 1D IBVP. In Section 4, we sketch-out how to extend the approach of Section 3 to
a general IBVP in three-dimensions. And finally, in Section 5, a summary of our findings is presented, which is followed by a
short appendix on the Lambert W-function.

2. Basic equations

Along with Eq. (4), we will need the following two constitutive relations from the 2TT:

H ¼ U� aMU and e ¼ er þ cpðH�UrÞ; ð5Þ

where the constants er and Ur corresponds to the reference state. On eliminating H between these two equations and then
applying @=@t to the result, we obtain

_e ¼ cpð _U� aM _UÞ: ð6Þ

Next, we recast Eq. (4) as

qðx; t þ k0Þ ¼ �KrUðx; tÞ; ð7Þ

where we observe that k0 ¼ s1 � s2 is positive. On substituting Eqs. (6) and (7) into Eq. (2), we find that under the modified
2TT theory, the conductive temperature satisfies the (delayed) field equation

_Uðx; t þ k0Þ � aM _Uðx; t þ k0Þ ¼ jMUðx; tÞ; ð8Þ

where j ¼ KðqcpÞ�1 denotes the thermal diffusivity.
To fully define the physical problems that are to be solved, boundary and initial conditions must be imposed. In this note

we restrict our attention to a bounded domain, B, whose boundary is smooth enough to guarantee that the conditions of the

R. Quintanilla, P.M. Jordan / Mechanics Research Communications 36 (2009) 796–803 797



Download	English	Version:

https://daneshyari.com/en/article/801737

Download	Persian	Version:

https://daneshyari.com/article/801737

Daneshyari.com

https://daneshyari.com/en/article/801737
https://daneshyari.com/article/801737
https://daneshyari.com/

