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A system reduction scheme related to a flexible multibody system with clearance is devised. In
this work, the absolute nodal coordinate formulation is used to model the flexible multibody
system, while imperfect joint is modeled as dry clearance joint or lubricated revolute joint.
Meanwhile, the component mode synthesis is applied to reduce the size of the matrices. Finally,
numerical examples are posted to analyze the proper selection of component modes and the con-
vergence properties of themodel reduction technique. It is obvious that the results of the reduced
model are close to the results of the original model when the error of the maximum deformation
energy between the reduced model and the original model is very small. The results of the re-
duced model with lubricated revolute joint can achieve high calculation accuracy with fewer
modes than those with dry clearance joint.

© 2014 Elsevier Ltd. All rights reserved.

Keywords:
Component mode synthesis
Absolute nodal coordinate formulation
Clearance joint
Lubrication

1. Introduction

Clearances always exist in mechanical systems due to abrasion, design tolerance or manufacture tolerance, which will cause high
frequency vibration and reduce the lifetime. Therefore, it is necessary to investigate the effect of joint clearance on kinematic and dy-
namic behaviors of the systems.

The research on rigid multibody systems with clearance is very mature, and achieves volumes of study results. Flores et al. [1–3]
performed a series of studies on the dynamics of rigidmultibody systemswith revolute clearance joints, spatial revolute joints, spher-
ical clearance joints and translational clearance joints. They found that joint clearance seriously influences dynamic characteristic of
mechanical systems and causes unwanted shake responses. Since the selection of a proper contact model is very important, Machado
et al. [4] compared several contact force models to analyze advantages and limitations of those models. Qi et al. [5] investigated the
effects of spatial prismatic joints on dynamics of a crank-slider mechanism. Bai et al. [6,7] used a new hybrid nonlinear contact
force model to analyze the effects of revolute clearance joint on the dynamic behavior of planar mechanical systems. Flores et al.
[8] and Erkaya and Uzmay [9] used experimental test to predict the performance of clearance joint models. Considering the effect
of oil film, Flores et al. [10,11] also investigated dynamic behaviors ofmultibody systemswith lubricated revolute joints and lubricated
spherical joints. Then, selection of appropriate parameters, such as clearance size, lubricant viscosity and input crank speed, for planar
mutibody systems with a lubricated revolute joint was investigated [12].

Compared to rigidmechanical systems, the dynamic features of the flexiblemechanical systemswith clearance aremore complex.
Based on the finite element method, Bauchau and Rodriguez [13] and Chunmei et al. [14] analyzed the effects of revolute clearance
joint and spherical clearance joint on the dynamic behavior of flexible multibody systems. Tian et al. [15,16] studied the dynamics
of flexible multibody systems with lubricated revolute joints and lubricated cylindrical joints based on the absolute nodal coordinate
formulation (ANCF) [17].
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However, a large amount of computation time is required for solving themotion equation of a flexiblemultibody system that con-
tains a large number of degrees of freedom. Thus, a reduction technique is required to save computation time. Géradin and Cardona
[18] used Craig–Bamptonmethod to reduce the degrees of freedom of a flexible multibody systemwith respect to a co-rotational ref-
erence frame. Based on the ANCF, Kobayashi [19] extended the Craig–Bamptonmethod to a flexible multibody systemwith large de-
formation. Sherif et al. [20] separated deformation modes of flexible bodies into low and high-frequency modes as well as with the
neglecting of the latter-mentioned coupling effect of the second ones to reduce the size of the matrices of a suspended roller.

Furthermore, the existence of clearances in joints makes model reduction of such systems more difficult. The research on the
model reduction of flexiblemultibody systemswith clearance is still an open problem and there are few published results concerning
the model reduction of multibody systems with clearance. Gerstmayr and Ambrósio [21] used component mode synthesis to reduce
the size of flexible multibody systems with clearance based on absolute coordinates. However, important issues such as the proper
selection of the component modes have not been addressed.

The Craig–Bamptonmethod is an efficient way to reduce the degrees of freedom of a flexible multibody systemwith clearance. In
this paper, flexible bodies aremodeled by using the ANCF. Then, the Craig–Bamptonmethod is used to reduce the degrees of freedom
of theflexible bodies. Finally, numerical examples are posted to analyze the proper selection ofmodes and the convergence properties
of the model reduction technique.

2. Model reduction of a flexible multibody system

The equations of motion for a flexible multibody system including kinematic constraints can be expressed as

M
::
q þ Kq ¼ F−ΦT

qλΦ ¼ 0
n

ð1Þ

whereM and K are generalized mass and stiffness matrices, respectively.Φ andΦq are the constraint equation and its Jacobin matrix
with respect to q. F is the generalized force vector that contains gravity, contact and control forces. λ is the Lagrangemultiplier vector.

In this paper, the ANCF is used to discretize flexible bodies in Eq. (1). Since this method leads to a high dimension of the equations
of motion, model reduction techniques are required to reduce the degrees of freedom of the system. If a reduction via projection is
used, q is approximated in a subspace ν of lower dimension and the relation is represented by a projection matrix V, the approxima-
tion can be expressed by

p ¼ Vq: ð2Þ

In order to obtain matrix V, various techniques have been developed through the last decade, such as component mode synthesis
[22,23], improved reduction system method [24], Krylov subspace method [25]. Each of them has its corresponding advantages and
disadvantages [26].

From Eqs. (1) and (2), the motion equation of the system with constraint force can be written as

M
::
p þ Kp ¼ F−Q̂ Φ ¼ 0g ð3Þ

whereM, K, F and Q̂ are the mass matrix, stiffness matrix, generalized force vector and constraint force of the system under modal
coordinate, respectively. All parameters in Eq. (3) are given as follows:

M ¼ VTMV; K ¼ VTKV; F ¼ VT F; Q̂ ¼ VTΦT
qλ:

3. Revolute clearance joints: dry contact model

Clearances always exist in mechanical systems which lead to the failure of displacement constraints between bearing and journal.
The journal can move freely inside the bearing until contact between the two bodies occurs. Force constraints of mechanical systems
are introduced.

Fig. 1 shows a revolute clearance joint, connecting bearing (part of body i) and journal (part of body j). And their centers are points
Pi and Pj, respectively. From Fig. 1, the eccentricity vector which connects points Pi and Pj can be given by

ei j ¼ r j−ri: ð4Þ

Then the unit eccentricity vector can be expressed as

n ¼ ei j
ei j

ð5Þ

where eij is the magnitude of the eccentricity vector.
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